K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Ta có:

M=/x+3/+/x-5/>=/x+3-x+5/

                      >=8

Vậy Min M=8 với mọi x

A=/x+13/+64

   vì /x+13/>=0

=>  /x+13/+64>=64

 Vậy MinA=64 khi x=-13

7 tháng 4 2016

giup minh voi nhanh len:)

7 tháng 4 2016

x^3+y^3=(x+y)^3-3xy(x+y)

             =27-9xy

Mà (x+y)^2 lớn hơn hoặc bằng 4xy

=>9 lớn hơn hoặc bằng 4xy (x+y=3)

=>81/4 lớn hơn hoặc bằng 9xy (nhân 2 vế với 9/4)

Dấu "=" xảy ra khi x=y= căn 9/4 = 3/2

Vậy GTNN của biểu thức trên là 27 - 81/4 = 27/4 khi x=y=3/2

MÌnh nghĩ như vậy ko biết đúng ko???

27 tháng 7 2017

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989

8 tháng 11 2015

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

8 tháng 11 2015

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

6 tháng 5 2016

Ta có: x+2y=1

=> x=1-2y

Thay x=1-2y vào biểu thức A

Ta có: A=(1-2y)2+2y2

A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2

Vậy min A = 0 <=> x=1/2 và y=1/4

6 tháng 5 2016

tính x theo y thế vào A tìm GTNN bằng HĐT

4 tháng 9 2017

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

14 tháng 12 2016

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(M=\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|-x-5\right|\)

\(\ge\left|x+3+\left(-x-5\right)\right|=2\)

Dấu "=" khi \(-3\le x\le5\)

Vậy \(Min_M=2\) khi \(-3\le x\le5\)