Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3
Vậy MinC = -1/2 khi x = 1/3
M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)
Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2
Vậy MaxM = 6/5 khi x = -1/2
N = x - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy MaxN = 1/4 khi x = 1/2
Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?
để A nhỏ nhất thì 6x - 5 - 9x2 lớn nhất
ta có 6x - 5 - 9x2 = - ( 9x2 - 6x + 5 )
= -( 3x - 1 ) 2 + 4
= 4 - (3x - 1 )2
ta có (3x - 1)2 lớn hơn hoặc = 0 với mọi x
trường hợp dấu bằng xảy ra cũng là trường hợp để 4 - (3x - 1 )2 lớn nhất
ta có với (3x -1)2 = 0 tức x = 1/3 thì 4 - (3x - 1 )2 = 4
khi đó A = \(\frac{2}{6x-5-9x^2}=\frac{2}{4}=\frac{1}{2}\)
vậy A nhỏ nhất = 1/2 khi và chỉ khi x=1/3
Ta có:
A = \(\frac{-5}{3x^2-6x+108}=\frac{-5}{3\left(x^2-2x+1\right)+105}=\frac{-5}{3\left(x-1\right)^2+105}\)
Ta luôn có: (x - 1)2 \(\ge\)0 \(\forall\)x ---> 3(x - 1)2 \(\ge\)0 \(\forall\)x
=> 3(x - 1)2 + 105 \(\ge\) 105 \(\forall\)x
=> \(-\frac{5}{3\left(x-1\right)^2+105}\ge-\frac{1}{21}\)\(\forall\)x
hay A \(\ge\)-1/21 \(\forall\)x
Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1
Vậy Amin = -1/21 tại x = 1
Ta có:
\(A=\frac{-5}{3x^2-6x+108}=\frac{-5}{3x^2-6x+3+105}=\frac{-5}{3\left(x-1\right)^2+105}\)
\(3\left(x-1\right)^2+105\ge105\)\(,\forall x\)
\(\Rightarrow\frac{1}{3\left(x-1\right)^2+105}\le\frac{1}{105}\Rightarrow\frac{-1}{3\left(x-1\right)^2+105}\ge-\frac{1}{105}\)\(\Rightarrow\frac{-5}{3\left(x-1\right)^2+105}\ge-\frac{5}{105}=-\frac{1}{21}\) \(GTNNA=-\frac{1}{21}\Leftrightarrow3\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(x=1\)
Vậy \(GTNNA=-\frac{1}{21}\Leftrightarrow x=1\)
\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)
\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)
\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)
ĐKXĐ: x2 khác 0=> x khác 0
A=(x2-4x+4+5x2)/(x2)
=[(x-2)2+5x2)/(x2)
=(x-2)2/(x2)+(5x2)/(x2)
=(x-2)2/(x2)+5
Vì B= (x-2)2/x2 >=0 => Bmin=0 =>x=2(t/m)
=>Amin=0+5=5 <=>x=2
vậy..................
6x^2-4x+4=5x^2+x^2-4x-4
6x^2-4x+4/x^2=5x^2+x^2-4x+4/x^2=5x^2/x^2 +(x-2)^2/x^2= 5+ (x-2)^2/x^2
do (x-2)^2/x^2 >= 0 với mọi x
nên 5+ (x-2)^2/x^2 >= 5
GTNN là 5 khi (x-2)^2/x^2 = 0 rồi cậu giải ra tìm x ý
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
Ta có : \(C=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)
\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)
Để C đạt giá trị nhỏ nhất
\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất
Ta có : \(\left(3x-1\right)^2+4\ge4\)
Dấu " = " xảy ra :
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?