Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=0; x<>1
\(P=\dfrac{-3+\sqrt{x}-1}{x-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-4}{\sqrt{x}-1}\)
b: Để P=5/4 thì \(\dfrac{\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{5}{4}\)
=>\(5\sqrt{x}-5=4\sqrt{x}-16\)
=>căn x=-11(loại)
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
\(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)
\(=\left(x^2-3x\right)\left(x^2+5x+4\right)\)
Ta thấy : \(x^2-3x=x^2-3x.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\)
\(x^2+5x+4=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{9}{4}=\left(x+\frac{5}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\)
\(\Rightarrow\left(x^2-3x\right)\left(x^2+5x+4\right)\ge\frac{-9}{4}.\frac{-9}{4}=\frac{81}{16}\)
\(Min_B=\frac{81}{16}\Leftrightarrow\)x = 0 hoặc x = 3
B = x(x - 3)(x + 1)(x + 4)
= (x2 + x)(x2 + x - 12)
Đặt (x2 + x) = a thì ta có:
B = a(a - 12) = a2 - 12a + 36 - 36
= (a - 6)2 - 36 \(\ge\)- 36
Vậy GTNN là B = - 36 đạt được khi a = 6 hay x = - 3 hoặc x = 2
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
\(ĐKXĐ:x>0\)
Có: \(B=\frac{x+16}{\sqrt{x}}+3=\sqrt{x}+\frac{16}{\sqrt{x}}+3\)
\(\ge2\sqrt{\sqrt{x}.\frac{16}{\sqrt{x}}}+3=2\sqrt{16}+3=11\)
Dấu "=" xảy ra khi x = 16