Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Z=|3x-3|+|x-4|-|3|
=3|x-1|+|x-4|-3
Ta có \(\left|x-1\right|\ge x-1\)
\(2\left|x-1\right|\ge0\)
\(\left|x-4\right|\ge4-x\)
\(\Rightarrow Z\ge x-1+0+4-x-3=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-1=0\\x-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=1\\x\le4\end{cases}\Leftrightarrow}x=1}\)
a: \(A=1000-\left|x+5\right|\le1000\forall x\)
Dấu '=' xảy ra khi x=-5
b: \(\left|x-3\right|+50\ge50\forall x\)
Dấu '=' xảy ra khi x=3
ta có |x+19|+|y-5|+1980 >1980
<=>|x+19|+|y-5|>0
dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0
<=>x=-19,y=5
Lời giải:
Ta có:
$E=\frac{5-3x}{4x-8}=\frac{1}{4}.\frac{5-3x}{x-2}=\frac{1}{4}(\frac{1}{2-x}-3)$
Để $E$ nhỏ nhất thì $\frac{1}{2-x}$ nhỏ nhất.
Điều này xảy ra khi $2-x$ là số âm lớn nhất.
Mà $x\in\mathbb{Z}$ nên $2-x\in\mathbb{Z}$
$\Rightarrow 2-x$ âm lớn nhất bằng $-1$
Khi đó, E nhỏ nhất bằng $\frac{1}{4}(-1-3)=-1$
S ko aj trả lời hít vại