\(A=x+\dfrac{9}{x-1}+3\) với x>1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

Có :\(A=x+\dfrac{9}{x-1}+3=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\left(x-1\right)\cdot\dfrac{9}{x-1}}+4=10\) 

(Cô-si)

Dấu "=" xảy ra <=> x - 1 = \(\dfrac{9}{x-1}\)

\(\Leftrightarrow x=4\)

Vậy MinA = 10 <=> x = 4

 

28 tháng 12 2020

\(A=x+\dfrac{9}{x-1}+3\\ =\left(x-1\right)+1+\dfrac{9}{x-1}+3\\ =x-1+\dfrac{9}{x-1}+4\)

Áp dụng bất đẳng thức Cauchy-Schwarz ta được:

\(x-1+\dfrac{9}{x-1}\ge2\sqrt{\left(x-1\right)\dfrac{9}{x-1}}=2\sqrt{9}=2.3=6\\ \rightarrow A\ge6+4=10\)Dấu "=" xảy ra khi và chỉ khi \(x-1=\dfrac{9}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)Vậy \(GTNN\) của A là \(10\Leftrightarrow x=4\)  
27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

26 tháng 12 2020

Ta có: A = \(x+\frac{9}{x-1}+3=x-1+\frac{9}{x-1}+4\)

Áp dụng bđt cosi cho các số dương x - 1 và 9/(x - 1) Ta có: (x > 3)

\(x-1+\frac{9}{x-1}\ge2.\sqrt{\left(x-1\right)\cdot\frac{9}{x-1}}=2.3=6\)

=> A \(\ge\)6 + 4 = 10

Dấu "=" xảy ra <=> \(x-1=\frac{9}{x-1}\) <=> (x - 1)2 = 9 <=> \(\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\) <=> \(\orbr{\begin{cases}x=4\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

Vậy MinA = 10 <=> x = 4

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

1 tháng 8 2020

a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng

b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)

c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)

do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)

\(=>\frac{1}{P}\ge-\frac{1}{3}\)

dấu = xảy ra khi x=0

zậy ..

1 tháng 8 2020

came ơn bạn nha!!!

18 tháng 10 2018

Ukm ko để ý

14 tháng 10 2018

ĐỀ THI VÀO 10 ĐÓ CẢM ƠN MN TRƯỚC NHA:))

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

25 tháng 11 2022

a: \(P=\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{1}{x+1}\right)\cdot\dfrac{x+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Khi \(x=\dfrac{2+\sqrt{3}}{2}=\dfrac{4+2\sqrt{3}}{4}\) thì 

\(P=\left(\dfrac{\sqrt{3}+1}{2}+1\right):\left(\dfrac{\sqrt{3}+1}{2}-1\right)\)

\(=\dfrac{\sqrt{3}+3}{2}:\dfrac{\sqrt{3}-1}{2}=\dfrac{3+\sqrt{3}}{\sqrt{3}-1}\)

15 tháng 1 2019

1) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-9\ne0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}=\dfrac{3\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}\)2) Để A=\(\dfrac{5}{6}\) thì \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}=\dfrac{5}{6}\Leftrightarrow\left(\sqrt{x}+1\right)6=\left(\sqrt{x}+3\right)5\Leftrightarrow6\sqrt{x}+6=5\sqrt{x}+15\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)

14 tháng 1 2019

1. Ta có:

\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)}{3\left(x-9\right)}+\dfrac{1}{3}\)

\(=\dfrac{2x-6\sqrt{x}}{3\left(x-9\right)}+\dfrac{x-9}{3\left(x-9\right)}\)

\(=\dfrac{3x-6\sqrt{x}-9}{3x-27}\)

\(=\dfrac{x-2\sqrt{x}-3}{x-9}\)