K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

A=(x-1)(x+2)(x+3)(x+6)

=(x2+5x-6)(x2+5x+6)

Đặt x2+5x-6=t ta đc

t(t+12)=t2+12t

=t2+12t+36-36

=(t+6)2-36\(\ge-36\)

=>\(A\ge-36\)

Dấu = khi t=-6 <=>x2+5x-6=-6 <=>x=-5 hoặc x=0

Vậy MinA=-6 khi x=0 hoặc x=-5

 

28 tháng 12 2018

A=(x-1)(x+6)(x+2)(x+3)

A=(x2+6x-x-6)(x2+2x+3x+6)

A=(x2+5x-6)(x2+5x+6)

A=(x2+5x)2+36≥36

Dấu "=" xảy ra khi và chỉ khi :

(x2+5x)2=0

→x2+5x=0

→x(x+5)=0

→x=0 hoặc x+5=0

→x=0 hoặc x=-5

4 tháng 1 2017

GTNN=-36 tại x=0

27 tháng 3 2017

-36 bạn nha

CHÚC BẠN HỌC GIỎI

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

28 tháng 3 2020

a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)

=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)

=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)

=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)

b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)

\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)

\(\Leftrightarrow\frac{x-3}{x-2}>0\)

\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)

\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)

Vậy ...

9 tháng 5 2016

A = (x-1)(x+2)(x+3)(x+6) 

= (x-1)(x+6)(x+3)(x+2) 

= (x² + 5x - 6)(x² + 5x + 6) 

Đặt x² + 5x = a =>  A= (a - 6)(a + 6) = a² - 36 ≥ -36 

Dấu = xảy ra <=> a = 0 <=> x² + 5x = 0 <=> x = 0 hoặc x = -5 

Vậy min A = -36 <=> x = 0 hoặc x = -5

9 tháng 5 2016

\(A=-36\Leftrightarrow x=0\) và \(x=-5\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

5 tháng 5 2019

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)\)

\(=a^2-6\)

\(\Rightarrow A_{min}=-6\Leftrightarrow a^2=0\Rightarrow a=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Rightarrow x\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy \(A_{min}=-6\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

5 tháng 5 2019

#)Giải :

    \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

   \(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

  => Giá trị nhỏ nhất biểu thức đã cho là -36 xảy ra khi và chỉ khi \(\left(x^2-5x\right)^2=0\Leftrightarrow x\left(x-5\right)=0\)

  \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)

  \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

      #~Will~be~Pens~#

5 tháng 8 2019

b) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy GTNN của bt là -36\(\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

5 tháng 8 2019

a) \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\frac{4}{3}\right)\)

\(=3\left[\left(x-1\right)^2-\frac{4}{3}\right]=3\left(x-1\right)^2-4\ge-4\)

Vậy GTNN của bt là - 4\(\Leftrightarrow x=1\)