Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a\ne0;a\ne1\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)
\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
M>0 khi 4a>0 => a>0
Kết hợp với ĐKXĐ
Vậy M>0 khi a>0 và a\(\ne\)1
c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)
Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)
Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)
Vậy \(Max_M=1\)khi a=2
\(D=\left(\left(a^2\right)^2-2a^2.a+a^2\right)+3\left(a^2-2a+1\right)+5\)
\(=\left(a^2-a\right)^2+3\left(a-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi \(a=1\)
A = (a4 - 2a3 + a2) + 2.(a2 - 2a + 1) + 3 = (a2 - a)2 + 2.(a - 1)2 + 3 > 0 + 2.0 + 3
Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1
Vậy Min A = 3 tại a = 1
Bài 1:
a) \(M=x^2-3x+10=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
KL:...
2. a. \(A=12a-4a^2+3=-4\left(a-\frac{3}{2}\right)^2+12\)
Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-4\left(a-\frac{3}{2}\right)^2+3\le3\)
Dấu "=" xảy ra \(\Leftrightarrow-4\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)
Vậy Amax = 3 <=> a = 3/2
b. \(B=4t-8v-v^2-t^2+2017=-\left(v^2+t^2-4t+8v+20\right)+2037\)
\(=-\left(t-2\right)^2-\left(v+4\right)^2+2037\)
Vì \(\left(t-2\right)^2\ge0;\left(v+4\right)^2\ge0\forall t;v\)
\(\Rightarrow-\left(t-2\right)^2-\left(v+4\right)^2+2037\le2037\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(t-2\right)^2=0\\\left(v+4\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t-2=0\\v+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\v=-4\end{cases}}\)
Vậy Bmax = 2037 <=> t = 2 ; v = - 4
c. \(C=m-\frac{m^2}{4}=-\frac{1}{4}\left(m-2\right)^2+1\)
Vì \(\left(m-2\right)^2\ge0\forall m\)\(\Rightarrow-\frac{1}{4}\left(m-2\right)^2+1\le1\)
Dấu "=" xảy ra \(\Leftrightarrow-\frac{1}{4}\left(m-2\right)^2=0\Leftrightarrow m-2=0\Leftrightarrow m=2\)
Vậy Cmax = 1 <=> m = 2
\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)
\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)
Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).
\(a^4-2a^3+3a^2-4a+5\)
\(=a^4-2a^3+a^2+2a^2-4a+2+3\)
\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu "=" xảy ra khi a = 1
Vậy với a = 1 thì \(A_{Min}=3\)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
a) \(M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+a^2-2a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right].\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-\left(1-2a^2+4a\right)+\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(a-1\right)}.\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{a^3-1}.\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{a^3-1}{a^3-1}.\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{4a}{a^2+4}\)
b) Ta có :
\(\left(a-2\right)^2\ge0\)
\(\Leftrightarrow a^2-4a+4\ge0\)
\(\Leftrightarrow a^2+4\ge4a\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(a-2\right)^2=0\)
\(\Leftrightarrow a=2\)
Vậy \(Max_M=1\Leftrightarrow a=2\)
a) \(M=2a^2+4a+7\)
\(M=2\left(a^2+2a+\frac{7}{2}\right)\)
\(M=2\left(a^2+2.a.1+1+\frac{5}{2}\right)\)
\(M=2\left(a^2+2.a.1+1\right)+2.\frac{5}{2}\)
\(M=2\left(a+1\right)^2+5\ge5\)
Dấu = xảy ra khi :
\(a+1=0\Leftrightarrow a=-1\)
Vậy Mmin = 5 tại x = -1
# Ko bt có đúng ko nữa.....
a) M= a^2+a^2+2a+2a+1+1+5
=(a^2+2a+1)+(a^2+2a+1)+5
=(a+1)^2+(a+1)^2+5
với mọi a cs:
(a+1)^2 > 0
(a+1)^2 > 0
=> (a+1)^2+(a+1)^2 > 0
=> (a+1)^2+(a+1)^2+5 > 5
=> M > 5
dấu = xảy ra <=> (a+1)^2=0
<=> a+1=0
<=> a=-1
Vậy GTNN của M=5 khi a=-1