\(A=\left(2x+\frac{1}{4}\right)+!y+\frac{11}{3}!-1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)

3 tháng 8 2017

a) với x>1/2   => bt=x-1/2+3/4-x=...

với x<1/2 => bt=1/2-x+3/4-x=...

b)tự làm nha cưng

15 tháng 4 2019

a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)

b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)

\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)

Dấu "=" xảy ra khi:

\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)

17 tháng 4 2019

thank bạn nha

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

5 tháng 9 2018

Coi cái giá trị tuyệt đối là ẩn đi

5 tháng 9 2018

\(\frac{4}{5}-|x-\frac{1}{6}|=\frac{2}{3}\)

\(\Rightarrow|x-\frac{1}{6}|=\frac{2}{15}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{6}=\frac{2}{15}\\x-\frac{1}{6}=-\frac{2}{15}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{1}{30}\end{cases}}\)

Vậy.....