Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|3x-2016\right|-\left|3x+2016\right|=\left|3x-2016\right|-\left|2016+3x\right|\)
\(Áp\) \(dụng\) \(bất\) \(đẳng\) \(thức:\left|A\right|-\left|B\right|\le\left|A-B\right|\)
\(\Rightarrow A\le\left|3x-2016-2016-3x\right|=\left|-4032\right|\\ \Rightarrow A\le4032\)
\(Dấu\) \("="\) \(xảy\) \(ra\) \(khi\)
Lời giải:
$|x-2|\geq 0$ với mọi $x\in\mathbb{R}$ (tính chất trị tuyệt đối)
$\Rightarrow A=|x-2|+5\geq 5$
Vậy $A_{\min}=5$ khi $x-2=0\Leftrightarrow x=2$
Với mọi x, ta có:
|3x - 1| lớn hơn hoặc bằng 0 suy ra 2|3x - 1| lớn hơn hoặc bằng 0
=> 2|3x - 1| - 4 lớn hơn hoặc bằng -4
Có: A = -4 chỉ khi 3x - 1 = 0
=> A = -4 chỉ khi x = 1/3
Vậy A đạt giá trị nhỏ nhất khi x = 1/3
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x
=> ( x-2)2 +2023 \(\ge\) 2023
Vậy ...
Dấu bằng xảy ra khi x-2 = 0
b. (x-3)2+(y-2)2-2018
Ta có: \((x-3)^2 \ge0,\forall x\)
\((y-2) ^2 \ge0,\forall y\)
=> ( x-3)2 + ( y-2)2 \(\ge\) 0
=> ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y
Vậy ...
Dấu bằng xảy ra khi x-3=0
y-2=0
c. ( x+1)2 +100
Ta có : ( x+1)2 \(\ge0,\forall x\)
=> ( x+1)2+100 \(\ge\) 100
Vậy ...
Dấu bằng xảy ra khi x+1=0