\(\frac{-5}{3x^2-6x+108}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

Ta có:

A = \(\frac{-5}{3x^2-6x+108}=\frac{-5}{3\left(x^2-2x+1\right)+105}=\frac{-5}{3\left(x-1\right)^2+105}\)

Ta luôn có: (x - 1)2 \(\ge\)\(\forall\)x ---> 3(x - 1)2 \(\ge\)\(\forall\)x

=> 3(x - 1)2 + 105 \(\ge\) 105 \(\forall\)x

=> \(-\frac{5}{3\left(x-1\right)^2+105}\ge-\frac{1}{21}\)\(\forall\)x

hay A \(\ge\)-1/21 \(\forall\)x

Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1

Vậy Amin = -1/21 tại x = 1

3 tháng 7 2019

Ta có:

\(A=\frac{-5}{3x^2-6x+108}=\frac{-5}{3x^2-6x+3+105}=\frac{-5}{3\left(x-1\right)^2+105}\)

\(3\left(x-1\right)^2+105\ge105\)\(,\forall x\)

\(\Rightarrow\frac{1}{3\left(x-1\right)^2+105}\le\frac{1}{105}\Rightarrow\frac{-1}{3\left(x-1\right)^2+105}\ge-\frac{1}{105}\)\(\Rightarrow\frac{-5}{3\left(x-1\right)^2+105}\ge-\frac{5}{105}=-\frac{1}{21}\) \(GTNNA=-\frac{1}{21}\Leftrightarrow3\left(x-1\right)^2=0\)

                                         \(\Rightarrow\left(x-1\right)^2=0\)

                                                 \(\Rightarrow x-1=0\)

                                                                \(x=1\)

Vậy \(GTNNA=-\frac{1}{21}\Leftrightarrow x=1\)

13 tháng 12 2018

\(A=\frac{3x^2-6x+9}{x^2-2x+3}=3\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

20 tháng 11 2017

em chịu ạ! Tịt rùi! 

18 tháng 3 2018

\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)

\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)

20 tháng 3 2018

dòng thứ 2 ko hiểu

17 tháng 2 2020

Ta có : \(C=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)

\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)

Để C đạt giá trị nhỏ nhất

\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất

Ta có : \(\left(3x-1\right)^2+4\ge4\)

Dấu " = " xảy ra : 

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

27 tháng 6 2020

Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

13 tháng 8 2016

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)