K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

14 tháng 10 2018

Đánh đề cẩn thận chứ 

\(A=\left(2n+3\right)^2-\left(n-1\right)\left(n-5\right)+2\)

\(A=4n^2+12n+9-n^2+6n-5+2\)

\(A=3n^2+18n+6\)

\(A=3\left(n^2+6n+2\right)\)

\(A=3\left(n^2+2\cdot n\cdot3+3^2-7\right)\)

\(A=3\left[\left(n+3\right)^2-7\right]\)

\(A=3\left(n+3\right)^2-21\ge21\forall n\)

Dấu "=" xảy ra \(\Leftrightarrow n+3=0\Leftrightarrow n=-3\)

30 tháng 12 2023

a: \(M=2x^2-4x+3\)

\(=2x^2-4x+2+1\)

\(=2\left(x^2-2x+1\right)+1\)

\(=2\left(x-1\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

b: \(N=x^2-4x+5+y^2+2y^2\)

\(=x^2-4x+4+3y^2+1\)

\(=\left(x-2\right)^2+3y^2+1>=1\forall x,y\)

Dấu '=' xảy ra khi x-2=0 và y=0

=>x=2 và y=0

Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x=7

24 tháng 11 2021

\(A=x^2-8x+5\)

\(=\left(x^2-8x+16\right)-11\)

\(=\left(x-4\right)^2-11\)

\(=-11+\left(x-4\right)^2\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ -11

Min A=-11 ⇔\(x-4=0\)

                 ⇔\(x=4\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

4 tháng 8 2021

Ta có:A=x2-5x+1=\(\left(x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{25}{4}+1=\left(x-\dfrac{5}{4}\right)^2-\dfrac{21}{4}\)

Vì \(\left(x-\dfrac{5}{4}\right)^2\ge0\)

⇒ \(A\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

18 tháng 2 2021

3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2  4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24

6 tháng 8 2021

Ta có: A=2x2-3x+1=\(2\left(x^2-2.\dfrac{3}{4}+\dfrac{9}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

Vì \(2\left(x-\dfrac{3}{4}\right)^2\ge0\)

 \(\Rightarrow A\ge-\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy,Min \(A=\dfrac{-1}{8}\Leftrightarrow x=\dfrac{3}{4}\)