Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10
Ta có: (x+5)2>=0(với mọi x)
=> (x+5)2+10>=10(với mọi x)
hay A>=10(với mọi x)
Do đó, GTNN của A là 10 khi: (x+5)2=0
x+5=0
x=0-5
x=-5
Vậy GTNN của A là 10 tại x=-5
\(P=2x^2+y^2-10x-2xy+2019\)
\(P=x^2-2xy+y^2+x^2-10x+25+1994\)
\(P=\left(x^2-2xy+y^2\right)+\left(x^2-2\cdot x\cdot5+5^2\right)+1994\)
\(P=\left(x-y\right)^2+\left(x-5\right)^2+1994\ge1994\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=5\end{cases}\Rightarrow}x=y=5}\)
Vậy.....
\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)
\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)
\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)
\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)
Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Gọi k là một giá trị của A ta có:
\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)
Ta cần tìm k để PT (*) có nghiệm
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)
Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)
Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)
Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1
\(x^2\left(2-x^2\right)\)
\(=x^2.2-\left(x^2\right)^2\)
\(=2x^2-\left(x^2\right)^2\)
\(=-x^4+2x^2\)
=> BT ko có GTLN/GTNN
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
a) \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow\left(x-10\right)^2+1\ge1\)
Vậy GTNN của biểu thức bằng 1 khi và chỉ khi x-10=0 <=> x=10
b) \(4a^2+4a+2=\left(2a+1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> (2a+1)2 = 0 <=> 2a+1 = 0 <=> a = -1/2
Vậy GTNN của biểu thức bằng 1 khi và chỉ khi a = -1/2
d) \(9x^2-6x+5=\left(3x-1\right)^2+4\ge4\)
Dấu "=" xảy ra <=> (3x-1)2 = 0 <=> 3x-1= 0 <=> x = 1/3
Vậy GTNN của biểu thức bằng 4 khi và chỉ khi x = 1/3
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(x^2+10x+2\)
\(=x^2+10x+25-23\)
\(=\left(x+5\right)^2-23\ge-23\)
(Dấu "="\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\))
\(x^2+10x+2\)
\(=x^2+10x+25-23\)
\(=\left(x+5\right)^2-23\ge-23\)
Dấu ''='' \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)