K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Có |x| >= 0

=> |x|-3 >= -3

=> 6/|x|-3 >= 6/-3 = -2

Dấu "=" xảy ra <=> x=0

Vậy ..............

Tk mk nha

đề bài này sai thì phải. Tìm GTLN mới lm đc

3 tháng 5 2018

 Bmax khi (x-6)^2 +3 = 3

          <=>(x-6)^2 = 0

            =>x-6 = 0

            =>x = 6

lúc đó B=1/3

vậy Bmax=1/3 khi x=6

nếu thấy sai thi bạn kiểm tra hộ mình cái đề nha!!!(^_^)

            

3 tháng 5 2018

1/1=1

3 tháng 4 2018

ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)hoặc \(x+5=0\)

  • \(x-1=0\Rightarrow x=1\)
  • \(x+5=0\Rightarrow x=-5\)

\(\)vậy \(x\in(1;-5)\)

đúng thì k nha

3 tháng 4 2018

B=X^2-X+5X-5 =  X(X-1)+5(X-1)=(X-1)(X-5)=0

24 tháng 8 2016

Với mọi x thì A= |x+5/8 \(\ge\)0 .

Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.

Vậy GTNN (A)= 0 khi x= -5/8.

24 tháng 8 2016

Ta có:

\(A=\left|x+\frac{5}{8}\right|\ge0\)

Dấu "=" xảy ra khi và chỉ khi x = -5/8

Vậy Min A = 0 khi và chỉ khi x = -5/8

8 tháng 2 2020

A= \(\frac{2015}{\left|x\right|-3}\)

Ta có \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|-3\ge-3\forall x\)

\(\Rightarrow\frac{2015}{\left|x\right|-3}\le\frac{2015}{-3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\)

\(\Leftrightarrow x=0\)

Vậy MaxA = \(\frac{-2015}{3}\) \(\Leftrightarrow x=0\)

@@ Học tốt @@

## Chiyuki Fujito

4 tháng 4 2020

Để A có giá trị nhỏ nhất thì 2015/|x|-3 có giá trị nhỏ nhất => |x|-3 có giá trị nhỏ nhất => |x| có giá trị nhỏ nhất mà x lá số nguyên nên |x|=0 => x=0 . Vậy A có GTNN là 2015/0-3 = 2015/-3 khi và chỉ khi x=0

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

15 tháng 3 2017

sửa (x-3)^2

GTNN=5 khi x=3 và y=1

15 tháng 3 2017

\(\left(x-3\right)^2+\left(y-1\right)^2+5\)

ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0x\varepsilon r\\\left(y-1\right)^2\ge0y\varepsilon r\end{cases}}\)

=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x.y \(\varepsilon\) R

=>biểu thức đạt giá trij lớn nhất là 5 tại

\(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}=>\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

4 tháng 5 2019

Ta có:\(|x+2017|+|x-2|\)

         \(=|x+2017|+|2-x|\ge|x+2017+2-x|\)

\(\Rightarrow\frac{1}{|x+2017|+|2-x|}\le\frac{1}{2015}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+2017\right).\left(2-x\right)\ge0\) 

Tự làm típ nha gợi í có 2 Th là 2 cái lớn hơn hoặc bằng 0 và TH2 là 2 cái nhỏ hơn 0

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2017\ge0\\2-x\ge0\end{cases}}\\\hept{\begin{cases}x+2017< 0\\2-x< 0\end{cases}}\end{cases}}\)

4 tháng 5 2019

Để A có GTLN thì mẫu số phải có GTNN

Áp dụng bất đẳng thức: \(|x|+|y|\ge|x+y|\)

Ta có: \(|x+2017|+|x-2|=|x+2017|+|2-x|\ge|x+2017+2-x|=2019\)

Dấu "=" xảy ra \(\Leftrightarrow xy\ge0\)

\(\Leftrightarrow-2017\le x\le2\)

Vậy GTLN của \(A=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)