Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{189}{190}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}........\frac{378}{380}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}........\frac{18.21}{19.20}=\frac{1.2.3......18}{2.3.4....19}.\frac{4.5.6....21}{3.4.5....20}\)
\(P=\frac{1}{19}.\frac{21}{3}=\frac{21}{57}\)
Ấn vô đây xem người nhận
Universe Size Comparison 3D - YouTube
Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
a) 10 - (x-4)=14
<=> 10 - x + 4 = 14
<=> -x = 0
<=> x = 0
Vậy x=0
b) \(\left|x+2\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy x=3; x=-7
c) \(\frac{1}{2}x+\frac{2}{3}\left(x-1\right)=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{2}{3}x-\frac{2}{3}=\frac{1}{3}\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\)
d)\(2x^2-72=0\)
\(\Leftrightarrow2x^2=72\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy x=6 ; x=-6
e) \(\left[\left(3x-5x\right)8\right]:4=18\)
\(\Leftrightarrow\left(3x-5x\right)8=72\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}=-4,5\)
Vậy x=-4,5
do (x+2)2>=0 với mọi x ; (y-2)2>=0 mọi y => (x+2)2 -(y-2)2>=0 mọi x,y => 4 -(x+2)2-(y-2)2>=4 với mọi x, y
dấu = xảy <=> x+2=0
=>x=-2 ; y=2
y-2=0
Với x= - 2;y= 2 thì giá trị lớn nhất của biểu thức là A=4
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
\(D=\left(4-5x\right)^{2k}-3^2=\left(4-5x\right)^{2k}-9\)
Vì \(\left(4-5x\right)^{2k}\ge0\Rightarrow D=\left(4-5x\right)^{2k}-9\ge9\)
=>Dmin=(4-5x)2k-9=9
=>(4-5x)2k=0
=>4-5x=0
=>5x=4
=>x\(=\frac{4}{5}\)
Vậy Dmin khi x=\(\frac{4}{5}\)
do (4-5x)2k\(\ge\)0 với mọi x
=>D=(4-5x)2k-32\(\ge\)-9 với mọi x
Dấu bằng xảy ra khi:(4-5x)2k-32=9
=>(4-5x)2k=0
=>4-5x=0
=>5x=4
=>x=\(\frac{4}{5}\)
vậy D min = -9 tại x=\(\frac{4}{5}\)=0,8