K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 5 2019

\(A=sina+\sqrt{3}cosa=2\left(\frac{1}{2}sina+\frac{\sqrt{3}}{2}cosa\right)\)

\(2=\left(sina.cos\frac{\pi}{3}+cosa.sin\frac{\pi}{3}\right)=2sin\left(a+\frac{\pi}{3}\right)\ge-2\)

\(\Rightarrow A_{min}=-2\) khi \(sin\left(a+\frac{\pi}{3}\right)=-1\Rightarrow a=-\frac{5\pi}{6}+k2\pi\)

14 tháng 2 2018

Chọn C.

Theo giả thiết ta có:

P = ( sina + sinb) 2 + ( cosa + cosb) 2

= sin2a + 2.sina.sinb + sin2b + cos2a + 2cosa. cosb + cos2b

= 2 + 2( sina.sinb + cos a. cosb)

= 2 + 2.cos( a - b)   ( sử dụng công thức cộng)

NV
2 tháng 6 2020

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=cos^2a+sin^2a+cos^2b+sin^2b+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2cos\left(a-b\right)=2+2cos\frac{\pi}{3}=3\)

\(\left(cosa+sina\right)^2=\frac{36}{25}\Leftrightarrow1+2sina.cosa=\frac{36}{25}\)

\(\Rightarrow sin2a=\frac{36}{25}-1=\frac{11}{25}\)

\(cos2a=cos^2a-sin^2a=\left(cosa-sina\right)\left(cosa+sina\right)>0\)

\(\Rightarrow cos2a=\sqrt{1-sin^22a}=\frac{6\sqrt{14}}{25}\)

8 tháng 5 2018

[1-2sina/2cosa/2+(2cos^2a/2 - 1)]/[1-2sina/2cosa/2-1+2sin^a]

=2cosa/2(cosa/2-sina/2)/[2sina/2(sina/2-cosa/2)]

= -cota/2

9 tháng 10 2016

\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)

\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)

\(\Leftrightarrow1+2.sina.cosa=2\)

\(\Leftrightarrow2.sina.cosa=2-1=1\)

\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)

Vậy  P=sina.cosa=\(\frac{1}{2}\)

\(Q=\sin^4a+cos^4a\)

\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)

\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)

\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na

 

 

20 tháng 7 2019

Chọn B.

Ta có: 

Nên (sina + cosa)2 =2 hay sin2a + cos2a + 2 sina.cosa = 2

Suy ra sina.cosa = ½.

Khi đó: sin4a + cos4a  = (sin2a + cos2a)2 - 2sin2a.cos2a = 1 - 2.(1/2)2 = ½.

27 tháng 1 2021

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)