Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\)
\(\text{Vì }\left(x+\frac{4}{7}\right)^2\ge0\)
\(\text{nên }\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\ge-\frac{1}{2}\)
\(\text{Hay }A\ge-\frac{1}{2}\)
\(\text{Vậy }GTNN_A=-\frac{1}{2}\text{,dấu bằng xảy ra khi x = }-\frac{4}{7}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
a) Ta có : A = - 15 - |7 - x| = -(15 + |7 - x|)
vì \(\left|7-x\right|\ge0\forall x\Rightarrow15+\left|7-x\right|\ge15\Rightarrow-\left(15+\left|7-x\right|\right)\le-15\)
Dấu"=" xảy ra <=> 7 - x = 0
=> x = 7
Vậy GTLN của A là - 15 khi x = 7
b) Ta có : \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0}\)
=> \(\left|x+2,5\right|+\left(y-1\right)^4-6\ge-6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}}\)
Vậy GTNN của B là - 6 khi \(\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
a) Vì \(\left|7-x\right|\ge0\forall x\)\(\Rightarrow-15-\left|7-x\right|\le-15\forall x\)
hay \(A\le-15\)
Dấu " = " xảy ra \(\Leftrightarrow7-x=0\)\(\Leftrightarrow x=7\)
Vậy \(maxA=-15\Leftrightarrow x=7\)
b) Vì \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}}\)\(\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0\forall x,y\)
\(\Rightarrow\left|x+2,5\right|+\left|y-1\right|^4-6\ge-6\forall x,y\)
hay \(B\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
Vậy \(minB=-6\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)