Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x\ne\frac{-2}{3},x\in Z\)
M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)
Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)
Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)
\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất
\(\Leftrightarrow3x+2=-1\)
\(\Leftrightarrow\)\(3x=-3\)
\(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)
Với x=-1 thì M=4039
Vậy Min M=4039\(\Leftrightarrow x=-1\)
em moi hoc lop 6.
Ai di ngang qua tich mnih cho tron 300 nhe ban
Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0
=> (x + 1)2 + (y - 2)2 + 9 \(\ge\)9
Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0 => x = -1 và y = 2
Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2)2 + 9 là 9 khi x = -1 và y = 2
\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)
Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .
Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)
\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)
\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)
\(\Rightarrow2A\ge-18\)
\(\Rightarrow A\ge-9\)
DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)
Cảm ơn bạn nhiều