Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{x-9+16}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}\\ =\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{16}-6=2\)
Dấu \("="\Leftrightarrow\left(\sqrt{x}+3\right)^2=16\Leftrightarrow\sqrt{x}+3=4\Leftrightarrow x=1\left(tm\right)\)
Vậy GTNN là 2, xảy ra khi x=1
`\sqrt{x^2 - 2x + 4}`
`=\sqrt{(x-1)^2 + 3}`
Do `\sqrt{(x-1)^2 + 3} >=0`
`(x-1)^{2} >=0`
`=>(x-1)^{2} + 3 >=3AAx`
`=>\sqrt{(x-1)^2 + 3} >= \sqrt{3}AAx`
Dấu "=" xảy ra `<=>x-1=0`
`<=>x=1`
Vậy `min` của biểu thức là `\sqrt{3} <=>x=1`
ĐKXĐ: 4-(x-1)^2>=0
=>(x-1)^2<=4
=>-2<=x-1<=2
=>-1<=x<=3
\(\left(x-1\right)^2>=0\)
=>-(x-1)^2<=0
=>\(-\left(x-1\right)^2+4< =4\)
=>\(\sqrt{-\left(x-1\right)^2+4}< =2\)
Dấu = xảy ra khi x=1
\(\sqrt{4-\left(x-1\right)^2}>=0\forall x\) thỏa mãn ĐKXĐ
Dấu = xảy ra khi 4-(x-1)^2=0
=>(2-x+1)(2+x-1)=0
=>(3-x)(1+x)=0
=>x=3 hoặc x=-1
a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
\(Q=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2\)
=>\(Q>=2\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}-2=2\cdot2-2=2\)
Dấu = xảy ra khi \(\left(\sqrt{x}+1\right)^2=4\)
=>\(\sqrt{x}+1=2\)
=>x=1