Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
\(x^2+x\sqrt{3}+1\)
\(=x^2+2.x.\frac{\sqrt{3}}{2}+\left(\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
\(=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{\sqrt{3}}{2}\)
Đặt \(A=x^2+x\sqrt{3}+1\)
\(\Rightarrow A=x^2+x\sqrt{3}+\frac{3}{4}+\frac{1}{4}\)
\(\Rightarrow A=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\forall x\Rightarrow\)\(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Vậy \(A_{min}=\frac{1}{4}\Leftrightarrow x+\frac{\sqrt{3}}{2}=0\Leftrightarrow x=-\frac{\sqrt{3}}{2}\)