K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Ta có: \(\left(x-15\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-15\right)^2+2018\ge2018\forall x\)

Dấu ' = ' xảy ra \(\Leftrightarrow\left(x-15\right)^2=0\Leftrightarrow x=15\)

Vậy GTNN của biểu thức \(\left(x-15\right)^2+2018=2018\Leftrightarrow x=15\)

Tham khảo nhé~

3 tháng 8 2018

\(\left(x-15\right)^2+2018\)

 Ta có:\(\left(x-15\right)^2\ge0;2018>0\)

   \(\Rightarrow\left(x-15\right)^2+2018\ge2018\)

Vậy GTNN của biểu thức =2018

26 tháng 9 2018

có |của một số|>0

==>giá trị nhỏ nhất của F =1

=> x=2018

26 tháng 9 2018

\(F=\left|2018-x\right|+\left|2019-x\right|\)

     \(=\left|2018-x\right|+\left|x-2019\right|\)

Ta có :

\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)

=> \(F\ge\left|-1\right|\)

=> \(F\ge1\)

Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0

TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)

=> 2019 < x < 2018 ( vô lí - loại )

TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)

=> 2018 < x < 2019

Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019

\(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)

Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

\(\left|y+3\right|>=0\forall y\)

Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)

=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)

=>\(P>=2022\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y+3=0

=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

23 tháng 10 2018

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

7 tháng 8 2018

Ta có | x + 1 | \(\ge\)\(\forall\)x

=> 5 . | x + 1 | \(\ge\)\(\forall\)x

=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy, GTNN của A = 2018 khi và chỉ khi x = -1

7 tháng 8 2018

ta có :|x+1| >=0

  =>  5|x+1|>=0

=>  2018+5|x+1|>= 2018

dấu = xảy ra khi  |x+1|=0

                          x+1=0

                          x=-1

 vay gtnn cua bieu thuc tren la 2018  khi x=-1

3 tháng 8 2018

Ta có :

Để ( x-15)2 + 2018 nhỏ nhất thì :

( x-15)2 nhỏ nhất.

Mà (x - 15)2 ≥ 0 nên :

Min(x-15)2 = 0 ⇒ GTNN = 2018

1 tháng 10 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

3 tháng 3 2020

Ta có: \(A=|x-2017|+x-2018\)

\(\Rightarrow A=|2017-x|+x-2018\)

\(\Rightarrow A\ge2017-x+x-2018=-1\)

Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)

2 tháng 3 2020

Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)

=>  A\(\ge x-2018\forall x\)

Dấu " = " xảy ra khi \(|x-2017|\)=0

=> x= 2017

3 tháng 7 2021

a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)

b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)

Thấy : \(x^2+4\ge4\)

\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)

Vậy \(Max=3\Leftrightarrow x=0\)

3 tháng 7 2021

là GTNN á