![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B1,a,A=x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\ge2\)
Dấu "=" <=> x=3
Vậy ..........
\(b,B=x^2-20x+101\)
\(=\left(x^2-20x+100\right)+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" <=> x = 10
Vậy .
\(2,a,A=4x-x^2+3\)
\(=7-\left(x^2-4x+4\right)\)'
\(=7-\left(x-2\right)^2\le7\)
Dấu ''='' <=> x = 2
Vậy .
\(b,B=-x^2+6x-11\)
\(=-2-\left(x^2-6x+9\right)\)
\(=-2-\left(x-3\right)^2\le-2\)
Dấu ""=" <=> x = 3
Vậy..
![](https://rs.olm.vn/images/avt/0.png?1311)
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
1. Tìm giá trị nhỏ nhất của biểu thức P= 2x2 - 6x
2. Tìm giá trị lớn nhất của biểu thức E=4x - x2 + 3
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
P = 2x^2 - 6x
= 2( x^2 - 3x + 9/4) - 9/4
= 2( x-3/2)^2 - 9/4
nhận xét 2(x-3/2)^2 >=0
=> 2(x-3/2)^2 - 9/4 >=-9/4
dấu = xảy ra khi và chỉ khi
x- 3/2 = 0
=> x= 3/2
4x - x^2 + 3
= -x^2 + 4x - 4 +7
= -(x^2 - 4x + 4) + 7
= -(x-2)^2 + 7
nhận xét -(x-2)^2 <=0
=> -(x-2)^2 + 7 <=7
đấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
Dấu '' = '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)
Vậy GTLN của biểu thức = 3/4 khi x=-1/2
\(b,2+x-x^2=-x^2+x+2\)
\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)
Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2
Vậy GTNN của biểu thức = 9/4 khi x=1/2
\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)
Dấu ''='' xảy ra khi x-2=0 => x=2
Vậy GTLN của biểu thức = -3 khi x=2
Các câu khác tương tự
\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)
Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2
Vậy GTNN của biểu thức =10 khi x=-1/2
\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)
Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)
Dấu ''='' xảy ra khi x-1=0 => x=1
Vậy GTNN của biểu thức =-2 khi x=1
\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)
Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của biểu thức =1 khi x=1 và y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinA = 1 <=> x = -3
b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy MinB = 4 <=> x = 3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Học tốt
\(A=x^2+y^2-4x+6x-8\)
\(=x^2+y^2+2x-8\)
\(=\left(x^2+2x+1\right)+y^2-9\)
\(=\left(x+1\right)^2+y^2-9\)
\(\Rightarrow A_{min}=-9\)khi \(x=-1\)và \(y=0\)