K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)

hay \(x=\dfrac{1}{6}\)

Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)

b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)

\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)

Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)

\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)

Vậy: \(B_{min}=4\) khi x=2 và y=6

10 tháng 7 2021

Cảm ơn nhiều nha !

2A=1-1/2+1/2^2-...+1/2^98-1/2^99

=>3A=1-1/2^100

=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)

3: 

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

NV
16 tháng 1

Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)

\(\Rightarrow a=k^2.k.a^4\)

\(\Rightarrow a=k^3a^4\)

\(\Rightarrow\left(ka\right)^3=1\)

\(\Rightarrow ka=1\)

\(\Rightarrow a=\dfrac{1}{k}\) (1)

Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)

\(\Rightarrow c=\dfrac{1}{k}\) (2)

Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)

\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)

(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)

TH1: \(a=b=c\)

\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)

Th2: \(a=c=-b\)

\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)

11 tháng 2 2022

A=\(x.\dfrac{1}{5}+x.\dfrac{2}{3}-x.\dfrac{1}{4}\)

  =\(x.\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{1}{4}\right)\)

  =\(x.\dfrac{37}{60}\)

Thay x=\(\dfrac{1}{2}\) vào A ta được

 A=\(\dfrac{1}{2}.\dfrac{37}{60}=\dfrac{37}{120}\)

  

Giải: 1) A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019     A=1/2.(2/1.3+2/3.5+2.5.7+2/7.9+...+2/2017.2019)     A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2017-1/2019)     A=1/2.(1/1-1/2019)     A=1/2.2018/2019     A=1009/2019 Chúc bạn học tốt!
30 tháng 7 2021

bn ơi viết đpá án hơi khó nhìn xíu nhalolang

a) \(\dfrac{1}{3}x-\dfrac{1}{2}=\dfrac{3}{4}x+\dfrac{1}{15}\)

\(\Rightarrow\dfrac{1}{3}x-\dfrac{3}{4}x=\dfrac{1}{2}+\dfrac{1}{15}\)

\(\Rightarrow\dfrac{4}{12}x-\dfrac{9}{12}x=\dfrac{15}{30}+\dfrac{2}{30}\)

\(\Rightarrow\dfrac{-5}{12}x=\dfrac{17}{30}\)

\(\Rightarrow x=\dfrac{-102}{75}\)

\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)

\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\dfrac{64}{729}\)

\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)

\(\Rightarrow x=\dfrac{2}{3}\)

Bài 1: 

a) Ta có: \(A=-1.7\cdot2.3+1.7\cdot\left(-3.7\right)-1.7\cdot3-0.17:0.1\)

\(=1.7\cdot\left(-2.3\right)+1.7\cdot\left(-3.7\right)+1.7\cdot\left(-3\right)+1.7\cdot\left(-1\right)\)

\(=1.7\cdot\left(-2.3-3.7-3-1\right)\)

\(=-10\cdot1.7=-17\)

b) Ta có: \(B=2\dfrac{3}{4}\cdot\left(-0.4\right)-1\dfrac{2}{3}\cdot2.75+\left(-1.2\right):\dfrac{4}{11}\)

\(=\dfrac{11}{4}\cdot\left(-0.4\right)-\dfrac{5}{3}\cdot\dfrac{11}{4}+\left(-1.2\right)\cdot\dfrac{11}{4}\)

\(=\dfrac{11}{4}\left(-0.4-\dfrac{5}{3}-1.2\right)\)

\(=-\dfrac{539}{60}\)

c) Ta có: \(C=\dfrac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)

\(=\dfrac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^4}\)

\(=10\)

22 tháng 7 2017

Cho \(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{1}{7}.\dfrac{1}{2}+\dfrac{15}{8}}{a+\dfrac{5}{6}-\left(\dfrac{-1}{3}\right)}\)

a) Rút gọn A?

b) Tính A khi a=75%

c) Tìm a để A=50%

d) Tìm a thuộc Z để A là số nguyên.

e) Với a = bao nhiêu để A có giá trị bằng với giá trị của biểu thức:

\(B=\dfrac{\dfrac{2}{3}.\dfrac{15}{6}+\left(-0,5\right)^3}{\dfrac{1}{9}.6^2-5\dfrac{1}{3}}\)

Giải

a, Ta có:

\(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{3}{7}.\dfrac{1}{6}+\dfrac{1}{8}.15}{a+\dfrac{5}{6}+\dfrac{1}{3}}\)

\(A=\dfrac{\dfrac{3}{7}.\left(\dfrac{-5}{8}+\dfrac{3}{4}+\dfrac{1}{6}\right)+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)

\(A=\dfrac{\dfrac{3}{7}.\dfrac{7}{24}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)

\(A=\dfrac{\dfrac{1}{8}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)

\(A=\dfrac{\dfrac{1}{8}.\left(15+1\right)}{a+\dfrac{7}{6}}\)

\(A=\dfrac{2}{a+\dfrac{7}{6}}\)

b, Thay \(a=75\%\) vào \(A\), ta được:

\(A=\dfrac{2}{75\%+\dfrac{7}{6}}\)

\(A=\dfrac{2}{\dfrac{3}{4}+\dfrac{7}{6}}\)

\(\Rightarrow A=\dfrac{23}{12}\)

c, Ta có: \(\dfrac{2}{a+\dfrac{7}{6}}=50\%\)

\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{1}{2}\)

\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{2}{4}\)

\(\Rightarrow a+\dfrac{7}{6}=4\)

\(\Rightarrow a=\dfrac{17}{6}\)

d, Để \(A\in Z\Rightarrow2⋮a+\dfrac{7}{6}\)

\(\Rightarrow a+\dfrac{7}{6}\in\left\{\pm1;\pm2\right\}\)

\(\circledast,a+\dfrac{7}{6}=1\Rightarrow a=\dfrac{-1}{6}\)

\(\circledast,a+\dfrac{7}{6}=-1\Rightarrow a=\dfrac{-13}{6}\)

\(\circledast,a+\dfrac{7}{6}=2+\Rightarrow a=\dfrac{5}{6}\)

\(\circledast,a+\dfrac{7}{6}=-2\Rightarrow a=\dfrac{-19}{6}\)

\(a\in\varnothing\) khi \(A\in Z\)

e, Ta có:

\(B=\dfrac{5}{3}+\dfrac{-1}{8}\Rightarrow B=\dfrac{37}{24}\)

\(\Rightarrow\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{37}{24}\)

\(a+\dfrac{7}{6}=\dfrac{37}{24}.2\)

\(a+\dfrac{7}{6}=\dfrac{37}{12}\)

\(\Rightarrow a=\dfrac{23}{12}\)

Chúc bạn học thiệt giỏi nha!!! thanghoa

22 tháng 7 2017

Hơi dài nha... (mk cx ko ngờ đc leu)