Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)
\(\Rightarrow a=k^2.k.a^4\)
\(\Rightarrow a=k^3a^4\)
\(\Rightarrow\left(ka\right)^3=1\)
\(\Rightarrow ka=1\)
\(\Rightarrow a=\dfrac{1}{k}\) (1)
Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)
\(\Rightarrow c=\dfrac{1}{k}\) (2)
Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)
\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)
(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)
TH1: \(a=b=c\)
\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Th2: \(a=c=-b\)
\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)
A=\(x.\dfrac{1}{5}+x.\dfrac{2}{3}-x.\dfrac{1}{4}\)
=\(x.\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{1}{4}\right)\)
=\(x.\dfrac{37}{60}\)
Thay x=\(\dfrac{1}{2}\) vào A ta được
A=\(\dfrac{1}{2}.\dfrac{37}{60}=\dfrac{37}{120}\)
a) \(\dfrac{1}{3}x-\dfrac{1}{2}=\dfrac{3}{4}x+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{3}{4}x=\dfrac{1}{2}+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{4}{12}x-\dfrac{9}{12}x=\dfrac{15}{30}+\dfrac{2}{30}\)
\(\Rightarrow\dfrac{-5}{12}x=\dfrac{17}{30}\)
\(\Rightarrow x=\dfrac{-102}{75}\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\dfrac{64}{729}\)
\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(\Rightarrow x=\dfrac{2}{3}\)
Bài 1:
a) Ta có: \(A=-1.7\cdot2.3+1.7\cdot\left(-3.7\right)-1.7\cdot3-0.17:0.1\)
\(=1.7\cdot\left(-2.3\right)+1.7\cdot\left(-3.7\right)+1.7\cdot\left(-3\right)+1.7\cdot\left(-1\right)\)
\(=1.7\cdot\left(-2.3-3.7-3-1\right)\)
\(=-10\cdot1.7=-17\)
b) Ta có: \(B=2\dfrac{3}{4}\cdot\left(-0.4\right)-1\dfrac{2}{3}\cdot2.75+\left(-1.2\right):\dfrac{4}{11}\)
\(=\dfrac{11}{4}\cdot\left(-0.4\right)-\dfrac{5}{3}\cdot\dfrac{11}{4}+\left(-1.2\right)\cdot\dfrac{11}{4}\)
\(=\dfrac{11}{4}\left(-0.4-\dfrac{5}{3}-1.2\right)\)
\(=-\dfrac{539}{60}\)
c) Ta có: \(C=\dfrac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)
\(=\dfrac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^4}\)
\(=10\)
Cho \(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{1}{7}.\dfrac{1}{2}+\dfrac{15}{8}}{a+\dfrac{5}{6}-\left(\dfrac{-1}{3}\right)}\)
a) Rút gọn A?
b) Tính A khi a=75%
c) Tìm a để A=50%
d) Tìm a thuộc Z để A là số nguyên.
e) Với a = bao nhiêu để A có giá trị bằng với giá trị của biểu thức:
\(B=\dfrac{\dfrac{2}{3}.\dfrac{15}{6}+\left(-0,5\right)^3}{\dfrac{1}{9}.6^2-5\dfrac{1}{3}}\)
Giải
a, Ta có:
\(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{3}{7}.\dfrac{1}{6}+\dfrac{1}{8}.15}{a+\dfrac{5}{6}+\dfrac{1}{3}}\)
\(A=\dfrac{\dfrac{3}{7}.\left(\dfrac{-5}{8}+\dfrac{3}{4}+\dfrac{1}{6}\right)+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{3}{7}.\dfrac{7}{24}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{1}{8}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{1}{8}.\left(15+1\right)}{a+\dfrac{7}{6}}\)
\(A=\dfrac{2}{a+\dfrac{7}{6}}\)
b, Thay \(a=75\%\) vào \(A\), ta được:
\(A=\dfrac{2}{75\%+\dfrac{7}{6}}\)
\(A=\dfrac{2}{\dfrac{3}{4}+\dfrac{7}{6}}\)
\(\Rightarrow A=\dfrac{23}{12}\)
c, Ta có: \(\dfrac{2}{a+\dfrac{7}{6}}=50\%\)
\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{1}{2}\)
\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{2}{4}\)
\(\Rightarrow a+\dfrac{7}{6}=4\)
\(\Rightarrow a=\dfrac{17}{6}\)
d, Để \(A\in Z\Rightarrow2⋮a+\dfrac{7}{6}\)
\(\Rightarrow a+\dfrac{7}{6}\in\left\{\pm1;\pm2\right\}\)
\(\circledast,a+\dfrac{7}{6}=1\Rightarrow a=\dfrac{-1}{6}\)
\(\circledast,a+\dfrac{7}{6}=-1\Rightarrow a=\dfrac{-13}{6}\)
\(\circledast,a+\dfrac{7}{6}=2+\Rightarrow a=\dfrac{5}{6}\)
\(\circledast,a+\dfrac{7}{6}=-2\Rightarrow a=\dfrac{-19}{6}\)
\(a\in\varnothing\) khi \(A\in Z\)
e, Ta có:
\(B=\dfrac{5}{3}+\dfrac{-1}{8}\Rightarrow B=\dfrac{37}{24}\)
\(\Rightarrow\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{37}{24}\)
\(a+\dfrac{7}{6}=\dfrac{37}{24}.2\)
\(a+\dfrac{7}{6}=\dfrac{37}{12}\)
\(\Rightarrow a=\dfrac{23}{12}\)
Chúc bạn học thiệt giỏi nha!!!
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Cảm ơn nhiều nha !