Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: với n<2018 ta có :
\(2^m+2017=-\left(n-2018\right)+\left(n-2018\right)=0\)
=> Không thể xảy ra vì \(2^m+2017>0\) Vì m là số tự nhiên
TH2 : với \(n\ge2018\)
=> \(2^m+2017=n-2018+n-2018=2\left(n-2018\right)\)
Ta có : Vế trái \(2^m+2017\) là số tựi nhiên lẻ => ko chia hết cho 2
Mà Vế phải 2(n-2018) luôn chia hết cho 2
=> Vô lí . Vậy pt vô nghiệm và m,n ko tồn tại
\(M=\left|3x+1\right|+3x-49\)
\(M=\left|-3x-1\right|+3x-49\ge-3x-1+3x-49\)
\(M\ge-50\)
\(N=\left|x-7\right|+x-20=\left|7-x\right|+x-20\)
\(N\ge7-x+x-20=-13\)
\(C=\left|2x+5\right|+\left|x-1\right|+\left|2x-35\right|\)
\(C=\left|2x+5\right|+\left|35-2x\right|+\left|x-1\right|\)
\(C\ge\left|2x+5+35-2x\right|+\left|x-1\right|=40+\left|x-1\right|\ge40\)
Bài 1 : P = 2003 - 1003 : (999 - x) có GTNN
<=> 1003 : (999 - x) có GTLN
<=> 999 - x có GTNN
Vì 999 - x là số chia khác 0 và x thuộc N nên suy ra x = 998
Vậy P = 2003 - 1003 : (999 - 998) = 2003 - 1003 : 1 = 2003 - 1003 = 1000 có GTNN tại x = 998
Bài 2 thì bạn xem bài làm của mình ở đây nhá Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6 - Học toán với OnlineMath
A = |\(x\) + 19| + 1980
|\(x\) + 19| ≥ 0 \(\forall\) \(x\)
|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)
A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19
Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19
B = |\(x\) + 20| + |y - 21| + 2020
|\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y
B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020
B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)
Bmin = 2020 khi (\(x;y\)) = (-20; 21)
Để A có giá trị nhỏ nhất thì A = 1 ; 0
=> x thuộc ( 2018 hoặc 2017)
\(A=\left(x-2017\right)^{2018}+2019\)
Ta có: \(\left(x-2017\right)^{2018}\ge0\forall x\)
\(\Rightarrow\left(x-2017\right)^{2018}+2019\ge2019\forall x\)
\(A=2019\Leftrightarrow\left(x-2017\right)^{2018}=0\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)
\(A_{min}=2019\Leftrightarrow x=2017\)
Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)
=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)
Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)
Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
thanks bn nha