Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)

\(P=x^2+2y+2xy-6x-8y-2028\\ =x^2+y^2+y^2+2xy-6x-8y+2028\\ =\left(x^2+2xy+y^2\right)+y^2-6x-8y+2028\\ =\left(x+y\right)^2+y^2-6x-6y-2y+2028\\ =x+y^2+\left(-6-6y\right)+y^2-2y+1+2027\\ =\left(x+y\right)^2-6\left(x+y\right)+\left(y-1\right)^2+2027\\ =\left(x+y\right)^2-2\left(x+y\right)^3+9+\left(y-1\right)^2+2018\)
\(=\left[\left(x+y\right)^2-2\left(x+y\right)-3+9\right]+9+\left(y-1\right)^2+2018\\ =\left(x+y-3\right)^2+\left(y-1\right)^2+2018\\ \forall x,y\left(x-y-3\right)^2\ge0;\left(y-1\right)^2\ge0\\ =>D=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)
Vậy giá trị nhỏ nhất của P=2018
Xấu ''='' xảy ra khi: \(\left\{{}\begin{matrix}\left(x+y-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+1-3=0\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1

\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

\(P=x^2y^2+x^2-2xy+6x+2013\)
\(P=\left(xy-1\right)^2+\left(x^2+6x+9\right)+2003=\left(xy-1\right)^2+\left(x+3\right)^2+2003\ge2003\)
\(\Rightarrow Min_P=2003\Leftrightarrow\hept{\begin{cases}xy=1\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{3}\\x=-3\end{cases}}\)

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)
Sau đấy bn thay z vào là ra
Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)
Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)
a
à lộn