Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(|x-10|+5\right)^2+2|y-3|+2018\)
VÌ \(\left(|x-10|+5\right)^2\ge0 \left(1\right)\)
\(2|y-3|\ge0 \left(2\right)\)
TỪ (1);(2) \(\Rightarrow P=\left(|x-10|+5\right)^2+2|y-3|+2018\ge2018\)
DẤU "=" XẢY RA \(\Leftrightarrow\hept{\begin{cases}\left(|x-10|+5\right)^2=0\\2|y-3|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}|x-10|=-5\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)
VẬY Pmax=2018\(\Leftrightarrow\)x = 5 và y = 3
Giá trị tuyệt đối sao bằng âm được hả bạn???
Có: |x - 10| lớn hơn hoặc bằng 0 => |x - 10| + 5 lớn hơn hoặc bằng 5 => (|x - 10| + 5)2 lớn hơn hoặc bằn 25. Dấu "=" xảy ra khi x = 10 (*)
Cũng có: |y - 3| lớn hơn hoặc bằng 0 => 2|y - 3| lớn hơn hoặc bằng 0. Dấu "=" xảy ra khi y = 3 (**)
Từ (*) và (**) => Pmin = 25 + 0 + 2018 = 2043
A = ( x - 2 )2 + 2019
( x- 2 )2 \(\ge0\forall x\)
=> ( x - 2)2 + 2019 \(\ge2019\)
=> A \(\ge2019\)
Dấu " = " xảy ra <=> ( x - 2)2 =0
<=> x = 2
b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình
c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020
( 3-x )100 \(\ge0\forall x\)
=> - ( 3-x)100 \(\le0\forall x\)
Tương tự : - 3.( y+2)100 \(\le0\forall y\)
=> C \(\le2020\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
@Shadow@ Đề câu b) đúng rồi đó
\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)
ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)
=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
Ta có: \(\left(x-15\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-15\right)^2+2018\ge2018\forall x\)
Dấu ' = ' xảy ra \(\Leftrightarrow\left(x-15\right)^2=0\Leftrightarrow x=15\)
Vậy GTNN của biểu thức \(\left(x-15\right)^2+2018=2018\Leftrightarrow x=15\)
Tham khảo nhé~
\(\left(x-15\right)^2+2018\)
Ta có:\(\left(x-15\right)^2\ge0;2018>0\)
\(\Rightarrow\left(x-15\right)^2+2018\ge2018\)
Vậy GTNN của biểu thức =2018
Ta có \(\left(x-2\right)^{2016}\ge0\)với mọi giá trị của x
\(\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x
=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x
=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\ge1\)với mọi giá trị của x
=> Amin = 1 khi và chỉ khi \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)
Ta lại có \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy khi x = 2 và \(y=\frac{1}{2}\)thì \(A=\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\)đạt GTNN là 1.
A = ( x-2)2016 + (2y-1)2018 + 1
Ta có : ( x-2)2016\(\ge\)0
(2y-1)2018\(\ge\)0
\(\Rightarrow\) ( x-2)2016 + (2y-1)2018 + 1\(\ge\)1
\(\Rightarrow\)A\(\ge\)1 \(\Rightarrow\)Min(A)=1
\(\Rightarrow\)\(\orbr{\begin{cases}\left(X-2\right)^{2016}=0\\\left(2Y-1\right)^{2018}=0\end{cases}}\)
Phần còn lại tự làm bạn nhé !
\(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)
Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
\(\left|y+3\right|>=0\forall y\)
Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)
=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)
=>\(P>=2022\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y+3=0
=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)