Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)
Áp dụng ta được :
\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)
Áp dụng bđt: a2 + b2 > = (a + b)2/2
Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b
Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
CM đúng <=> (a + b)2 > = 4ab
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)
Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)
Dấu"=" xảy ra <=> x = y = 1/2
Vậy minA = 18/ <=> x = y = 1/2
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\)
Ta có: \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\Rightarrow\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-1\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-2\)
\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\ge1\)
\(\Rightarrow P\ge1\)
Vậy \(Min_P=1\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.