K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

\(P=-\left(6+\frac{24}{2\left|x-2y\right|+3\left|2x+1\right|+6}\right)\)

Để P đạt giá trị nhỏ nhất thì :

2 | x - 2y | + 3 | 2x + 1 | + 6 nhỏ nhất

\(\left\{{}\begin{matrix}\left|x-2y\right|\ge0\\\left|2x+1\right|\ge0\end{matrix}\right.\Rightarrow2\left|x-2y\right|+3\left|2x+1\right|+6\ge6\)

Dấu = xảy ra khi :

\(\left\{{}\begin{matrix}x-2y=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{4}\end{matrix}\right.\)

Vậy ...

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

12 tháng 8 2018

câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)

\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)

\(\Rightarrow\dfrac{1}{16}\le M\le61\)

\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)

câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)

\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)

\(\Rightarrow3\le M\le7\)

\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)

câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)

\(\Rightarrow M_{min}=-6\) khi \(x=2\)

12 tháng 8 2018

4) điều kiện xác định \(-6\le x\le10\)

ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)

áp dụng bunhiacopxki dạng căn ta có :

\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)

\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)

\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)

\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)

\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự

NV
30 tháng 6 2020

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)>0\Rightarrow a+b+c=2\)

\(\Rightarrow P=\frac{a^3}{\left(2-a\right)^2}+\frac{b^3}{\left(2-b\right)^2}+\frac{c^3}{\left(2-c\right)^2}\)

Ta có đánh giá: \(\frac{a^3}{\left(2-a\right)^2}\ge\frac{2a-1}{2}\) ; \(\forall a\in\left(0;2\right)\)

Thật vậy, BĐT tương đương:

\(2a^3\ge\left(2a-1\right)\left(a^2-4a+4\right)\)

\(\Leftrightarrow9a^2-12a+4\ge0\Leftrightarrow\left(3a-2\right)^2\ge0\) (luôn đúng)

Tương tự: \(\frac{b^3}{\left(2-b\right)^2}\ge\frac{2b-1}{2}\) ; \(\frac{c^3}{\left(2-c\right)^2}\ge\frac{2c-1}{2}\)

Cộng vế với vế: \(P\ge\frac{2\left(a+b+c\right)-3}{2}=\frac{1}{2}\)

\(P_{min}=\frac{1}{2}\) khi \(a=b=c=\frac{2}{3}\) hay \(x=y=z=\frac{3}{2}\)

DD
7 tháng 7 2021

\(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2}=\frac{3}{4}\left(2x+1\right)+\frac{3}{4}\left(2x+1\right)+\frac{2}{\left(2x+1\right)^2}-\frac{3}{2}\)

\(\ge3\sqrt[3]{\left[\frac{3}{4}\left(2x+1\right)\right]^2.\frac{2}{\left(2x+1\right)^2}}-\frac{3}{2}=\frac{3}{2}\sqrt[3]{9}-\frac{3}{2}\)

Dấu \(=\)khi \(\frac{3}{4}\left(2x+1\right)=\frac{2}{\left(2x+1\right)^2}\Leftrightarrow\left(2x+1\right)^3=\frac{8}{3}\Leftrightarrow x=\frac{1}{\sqrt[3]{3}}-\frac{1}{2}\).