Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
\(A=2x^2+2xy+y^2-2x+2y+1\)
\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)
\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)
\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)
Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy....
\(A=x^2+2y^2+2xy-4x+6y+2020\)
\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)
\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)
Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
\(=2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4+\left(-32\right)+\left(-8\right)=\left(-36\right)\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
\(N=2x^2+y^2+2xy-4x-2y+3\)
\(N=\left(x^2+2xy+y^2\right)+x^2-4x-2y+3\)
\(N=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)+1\)
\(N=\left(x+y-1\right)^2+\left(x-1\right)^2+1\)
Mà \(\left(x+y-1\right)\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow N\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(N_{Min}=1\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
\(N=2x^2+y^2+2xy-4x-2y\)\(+3\)
\(=\left(x^2+2xy+y^2\right)+x^2-2\left(2x+y\right)+3\)
\(=\left[\left(x+y\right)^2-2\left(2x+y\right)+1\right]+2+x^2\)
\(=\left(x+y+1\right)^2+x^2+2\)
\(Do\)\(\left(x+y+1\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)\(;\)\(y\)
\(x^2\)\(\ge\)\(0\)\(\forall\)\(x\)
=.>\(\left(x+y+1\right)^2+x^2+2\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)
=>\(N\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)
Dấu = xảy ra khi:
\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\x^2=0\end{cases}}\)
=>\(\hept{\begin{cases}x+y+1=0\\x=0\end{cases}}\)
=>\(\hept{\begin{cases}x+y=-1\\x=0\end{cases}}\)
=>\(\hept{\begin{cases}y=-1\\x=0\end{cases}}\)
Vậy \(N_{min}\)\(=\)\(2\)khi \(y=-1\)\(;\)\(x=0\)
Chúc pạn họk tốt~~~!!! :3