Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
Bài 1:
a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)
TH1: \(\frac{3x-2}{4}\) = \(\frac{3x+3}{6}\)
=> (3x-2)6 = (3x+3)4
18x -12= 12x+12
=> x = 4
TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\)
=> (3x-2)6 > (3x+3)4
18x-12> 12x+12
=> x \(\ge\) 5
b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2
c) Phần c bạn cũng xét tương tự như phần a
TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)
TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)
Thay 12 = x + 1 vào biểu thức trên, ta có:
x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 111
= x4 - x4 - x3 + x3 + x2 - x2 - x + 111
= 111 - x (*)
Thay x = 11 vào (*), ta có:
111 - 11
= 100
Vậy giá trị của biểu thức trên là 100 tại x = 11
(x + y + z)3 - x3 - y3 - z3
= x3 + y3 + z3 + 3(x + y)(x + z)(y + z) - x3 - y3 - z3
= 3(x + y)(x + z)(y + z)
A = 2x2 + 10x - 1
\(=2\left(x^2+5x+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
\(MinA=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
a) A= x4 + x2 +1/ 4(x2 - x +1)(x2 +x +1) . 1/ x2 +x +2
= 1/ 4(x2 +x +2)
= 1/ 4(x2 +x +1/4) + 7 <= 1/7
dấu = xảy ra <=> x= -1/2
b) với biểu thức B. tách tử thành (x-1)2 - (x -1) + 1
=> B = 1 - 1/x-1 + 1/( x-1)2
Đặt 1/x-1 = t
=> B = 1- t + t2 >= 3/4
dấu bằng xảy ra <=> x= 5
còn C thì tách tử thành 3x2 + ( x2 - 2x +1)
C >= 3 dấu bằng xảy ra <=> x=1
C=\(\left[\left(x^2-2xy+y^2\right)+2\left(xy\right)+1\right]+\)\(\left(y^2-8y+16\right)\)\(\left(x-y+1\right)^2+\left(y-4\right)^2\)
\(\Rightarrow C=0\)
\(\Rightarrow\)Amin = 0 khi y = 4 ; x = 3
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
A=(x−1)2+8≥8Amin=8⇔x=1B=(x+3)2−12≥−12Bmin=−12⇔x=−3C=x2−4x+3+9=(x−2)2+8≥8Cmin=8⇔x=2E=−(x+2)2+11≤11Emax=11⇔x=−2F=9−4x2≤9Fmax=9⇔x=0
HT
A=x2-2x+9
Ta có: A=x^2-2x+9
=> A=(x^2-2x+1)+8
=>A=(x-1)^2+8
vì (x-1)^2 > 0 với mọi x
=> (x-1)^2+8> 8 với mọi x
Dấu "=" xáy ra khi:
(x-1)^2=0=>x-1=0=>x=0+1=>x=1
Vậy Amin = 8 khi x=1
B=x^2+6x-3
=>B=-(x^2-6x+3)
=>B=-(x^2-2.3x+3^2)-3
=>B=-(x-3)^2-3
vì -(x-3)^2 < 0 với mọi x
=>-(x-3)^2-3< -3 với mọi x
Dấu '=' xảy ra khi x-3=0=>x=0+3=>x=3
Vậy B(min)=-3 khi x=3
chỗ này hình như là Bmax xem lại đề nhé
D=-x^2-4x+7
=>D=-x^2-2.2x+4+3
=>D=(-x^2-2.2x+4)+3
=>D=(-x-2)^2+3
Vì (-x-2)^2 <0 với mọi x
=>(-x-2)^2+3<3 với mọi x
Dấu "=" xảy ra khi x-2=0=>x=0+2=>x=2
Vậy Dmax=3 khi x=2
E=5-4x^2+4x
=>E=-4x^2+4x+5
=>E=(-2x)^2+2.2x+4+1
=>E=[(-2x)^2+2.2x+4]
=>E=(-2x+2)^2+1
Vì: (-2x+2)^2 < 0 với mọi x
=>(-2x+2)^2+1 < 1 với mọi x
Dấu "=" xảy ra khi 2x+2=0=>2x=-2=>x=-1
Vậy Emax=1 khi x=-1