K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\left|x-22\right|+\left|x+12\right|\)

\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|\)

\(M=\left|22-x\right|+\left|x+12\right|\ge34\)

\(M\ge34\)

Dấu "\(=\)" xảy ra khi:

\(\left(22-x\right)\left(x+12\right)\ge0\)

\(TH1:22-x\ge0;x+12\ge0\)

\(\Rightarrow22\ge x\ge-12\)

\(TH2:22-x\le0;x+12\ge0\)

\(\Rightarrow22\le x;x\ge12\left(vô.lý\right)\)

Vậy \(GTNN\) của \(M\) là \(34\) khi \(22\ge x\ge-12\)

NV
5 tháng 1

Áp dụng BĐT trị tuyệt đối:

\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|=34\)

Vậy \(M_{min}=34\) khi \(\left(22-x\right)\left(x+12\right)\ge0\Rightarrow-12\le x\le22\)

9 tháng 2 2017

A=|X+22|+|-X-12|+|X+1944|</ |X+22|+|-X-12+X+1944|

A>|X+22|+|1982|

A>|X+22|+1982

=>A>1982

<=>(-X-12)(X+1944) >0 VA X+22=0

=>X=-22

=> GTNN LA -22

9 tháng 2 2017

A = |x + 22| + |x + 12| + |x + 1944| = |x + 22| + |- x - 12| + |x + 1944|

A ≥ |- x - 12 + x + 1944| + |x + 22| ( Theo bđt |a| + |b| ≥ |a + b| )

A ≥ |1932| + |x + 22| = 1932 + |x + 22|

Dấu "=" xảy ra <=> (- x - 12)(x + 1944) ≥ 0 và |x + 22| = 0

=> x = - 22 ( thỏa mãn )

Vậy gtnn của A là 1932 tại x = - 22

19 tháng 1 2018

Do l2x-22I \(\ge0\)

l12-xl\(\ge0\)

2lx-13l\(\ge0\)

Nên D=l2x-22l+l12-xl+2lx-13l\(\ge0\)

Min D = 0\(\Leftrightarrow\hept{\begin{cases}2x-22=0\\12-x=0\\x-13=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\x=12\\x=13\end{cases}}}\)

             Vậy ko có gtri x thỏa mãn khi Min D =0

19 tháng 1 2018

thanks

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)

Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)

Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)

b: Để M=6 thì \(3-\left(x-1\right)^2=6\)

\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)

c: \(M=-\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

7 tháng 3 2022

a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)

 Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)

 Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)

b, Để M=6 thì:

\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)

c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow M=3-\left(x-1\right)^2\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(M_{max}=3\Leftrightarrow x=1\)

28 tháng 1 2023

`A=12+|x-3|+|x-5|`

`A=12+|x-3|+|5-x|`

Vì `|x-3|+|5-x| >= |x-3+5-x|=2`

`=>12+|x-3|+|5-x| >= 14` 

 Hay `A >= 14`

Dấu "`=`" xảy ra `<=>(x-3)(5-x) >= 0`

                           `<=>(x-3)(x-5) <= 0<=>3 <= x <= 5`