Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!
\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
khi \(x=\frac{1}{3},y=\frac{1}{6}\)
a) Ta có A = 4x2 - 4x + 1 = (2x - 1)2 \(\ge0\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 => x = 0,5
Vậy GTNN của A là 0 khi x = 0,5
b) Ta có x2 + 4y2 + 4xy = x2 + 2xy + 2xy + 4y2 = x(x + 2y) + 2y(x + 2y) = (x + 2y)2 \(\ge0\forall x;y\)
Dấu "=" xảy ra <=> x + 2y = 0 => x = - 2y
Vậy GTNN của B là 0 khi x = -2y
a) 4x2 - 4x + 1 = ( 2x - 1 )2 ≥ 0 ∀ x
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
Vậy GTNN của biểu thức = 0 <=> x = 1/2
b) x2 + 4y2 + 4xy = ( x + 2y )2 ≥ 0 ∀ x ,y
Đẳng thức xảy ra <=> x + 2y = 0 => x = -2y
Vậy GTNN của biểu thức = 0 <=> x = -2y
a/ \(4x^2-4x+4+1=\left(2x-1\right)^2+4\ge4\) Giá trị nhỏ nhất của BT là 4
b/ \(x^2+4y^2+4xy=\left(x+2y\right)^2\ge0\) Giá trị nhỏ nhất của BT là 0
a) 4x2 - 4x + 4 + 1
= ( 4x2 - 4x + 1 ) + 4
= ( 2x - 1 )2 + 4
\(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+4\ge4\)
Dấu " = " xảy ra <=> 2x - 1 = 0 => x = 1/2
Vậy GTNN của biểu thức = 4 <=> x = 1/2
b) x2 + 4y2 + 4xy = ( x + 2y )2
\(\left(x+2y\right)^2\ge0\forall x,y\)
Dấu " = " xảy ra <=> \(x+2y=0\Rightarrow2y=-x\Rightarrow y=\frac{-x}{2}\)
Vậy GTNN của biểu thức = 0 <=> y = -x/2
\(A=-2x^2-10y^2+4xy+4x+4y+2016\)
\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)
\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)
\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)
Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)
\(\Rightarrow A\le2088\)
Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)
A=−x2−12x+3=−(x2+12x+36)+39=−(x+6)2+39≤39
Vậy GTLN của A là 39 khi x = -6
B=7−4x2+4x=−(4x2−4x+1)+8=−(2x−1)2+8≤8
Vậy GTLN của B là 8 khi x =
~Hok tốt~
bạn xem lại đề đi, sao lại có 5x^2+10x^2 , sao không viết thành 15x^2 luôn chứ
H= (2x+y)^2 - 2(2x+y) + 1+ y^2 - 2y + 1 + 1
H= (2x+y+1)^2 + (y+2)^2 + 1
Min h là 1