Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(P=\left(\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}-2}{2}\left(ĐK:x\ge0;x\ne4\right)\)
\(\Leftrightarrow P=\left(\frac{\sqrt{x}+2+\sqrt{x}-2}{x-4}\right).\frac{\sqrt{x}-2}{2}\)
\(\Leftrightarrow P=\left[\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\frac{\sqrt{x}-2}{2}\)
\(\Leftrightarrow P=\frac{\sqrt{x}}{\sqrt{x}+2}\)
b)Tại x=9 \(\Leftrightarrow\frac{\sqrt{9}}{\sqrt{9}+2}=\frac{3}{3+2}=\frac{3}{5}\)
Ý c nàk
\(Q=P.\sqrt{x}=\sqrt{x}.\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{x}{\sqrt{x}+2}=\frac{x-4+4}{\sqrt{x}+2}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+4}{\sqrt{x}+2}\)
\(=\sqrt{x}-2+\frac{4}{\sqrt{x}+2}=\left(\sqrt{x}+2\right)+\frac{4}{\sqrt{x}+2}-4\)
Áp dụng bđt AM - GM ta có :
\(Q\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{4}{\sqrt{x}+2}}-4=2.2-4=0\) có GTNN là 0
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Khi \(x=1,44\): \(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\))
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)
\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)
Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn)
a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng
b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)
c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)
do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)
\(=>\frac{1}{P}\ge-\frac{1}{3}\)
dấu = xảy ra khi x=0
zậy ..
a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)
\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)
b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)
c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)