Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)
\(A=4x^2-12x+9-x^2-4x+5+2\)
\(A=3x^2-12x+16\)
\(A=3\left(x^2-4x+4\right)\)
\(A=3\left(x-2\right)^2\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow x=2\)
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)
\(=4x^2-12x+9-x^2-4x+5+2\)
\(=3x^2-16x+16\)
\(=3\left(x^2-\frac{16}{3}x+16\right)\)
\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)
\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)
dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)
\(\Leftrightarrow x=\frac{8}{3}\)
vậy...
\(N=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-3x-x+3+11\)
\(=x^2-4x+14\)
\(=x^2-2x-2x+4+10\)
= \(x\left(x-2\right)-2\left(x-2\right)+10\)
\(\left(x-2\right)\left(x-2\right)+10\)
\(\left(x-2\right)^2+10\ge10\)
Vậy \(Min_A=10\)
\(N=\left(x-1\right)\left(x-3\right)+11=x^2-4x+3+11=x^2-4x+4+10=\left(x-2\right)^2+10\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow N\ge10\)
Dấu bằng xảy ra \(\Leftrightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(minN=10\Leftrightarrow x=2\)
A=x^2+2x+1+x^2-6x+9
A=2x^2-4x+10
A=2(X^2-2x+5)
A=2(x^2-2x+1+4)
A=2((x-1)^2+4)
A=2(x-1)^2+8
Vì (x-1)^2>=0
=>2(x-1)^2>=0
=>A=2(x-1)^2+8>=8 Với mọi giá trị của x
Để A có giá trị nhỏ nhất khi 2(x-1)^2 nhỏ nhất khi đó:
2(x-1)^2=0
=>(x-1)^2=0
=>x-1=0
=>x=1
Vậy Amin=8 Khi x=1
Đúng ko bạn nhỉ?
A=(x−1)(x−2)(x−3)(x−4)+5A=(x−1)(x−2)(x−3)(x−4)+5
⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5
⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5
⇔A=(x2−5x+4)(x2−5x+6)+5⇔A=(x2−5x+4)(x2−5x+6)+5
⇔A=(x2−5x+4)[(x2−5x+4)+2]+5⇔A=(x2−5x+4)[(x2−5x+4)+2]+5
⇔A=(x2−5x+4)2+2(x2−5x+4)+5⇔A=(x2−5x+4)2+2(x2−5x+4)+5
⇔A=(x2−5x+4)2+2x2−10x+8+5⇔A=(x2−5x+4)2+2x2−10x+8+5
⇔A=(x2−5x+4)2+2x2−10x+13⇔A=(x2−5x+4)2+2x2−10x+13
⇔A=(x2−5x+4)2+2x2−10x+252+12⇔A=(x2−5x+4)2+2x2−10x+252+12
⇔A=(x2−5x+4)2+(2x2−10x+252)+12⇔A=(x2−5x+4)2+(2x2−10x+252)+12
⇔A=(x2−5x+4)2+2(x2−5x+254)+12⇔A=(x2−5x+4)2+2(x2−5x+254)+12
⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12
⇔A=(x2−5x+4)2+2(x−52)2+12⇔A=(x2−5x+4)2+2(x−52)2+12
Vậy GTNN của A=12A=12 khi ⎧⎩⎨x2−5x+4=0x−52=0{x2−5x+4=0x−52=0 ⇔⎧⎩⎨x2−5x+4=0(loai)x=52