K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)

\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

\(c,\)Tại x = 6, ta có :

\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)

Vậy tại x = 6 thì B = 3 

\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)

Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)

Th2: \(x+3=-1\Rightarrow x=-4\)

Th3 : \(x+3=3\Rightarrow x=0\)

TH4 \(x+3=-3\Rightarrow x=-6\)

Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)

15 tháng 12 2019

a)Để B đc xác định thì :x+3 khác 0

                                     x-3 khác 0

                                     x^2-9 khác 0

=>x khác -3

    x khác 3

b) Kết Qủa BT B là:3/x+3

26 tháng 10 2020

\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)

\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)

\(A=4x^2-12x+9-x^2-4x+5+2\)

\(A=3x^2-12x+16\)

\(A=3\left(x^2-4x+4\right)\)

\(A=3\left(x-2\right)^2\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow x=2\)

26 tháng 10 2020

\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)

\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)

\(=4x^2-12x+9-x^2-4x+5+2\)

\(=3x^2-16x+16\)

\(=3\left(x^2-\frac{16}{3}x+16\right)\)

\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)

\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)

dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)

\(\Leftrightarrow x=\frac{8}{3}\)

vậy...

16 tháng 12 2019

a

\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)

b

\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)

c

Với \(x=4\Rightarrow A=-3\)

d

Để A nguyên thì \(\frac{3}{x-3}\) nguyên

\(\Rightarrow3⋮x-3\)

 Làm nốt.

16 tháng 12 2019

toi moi lop 5

6 tháng 12 2019

\(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)

a) Để M có nghĩa \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x\ne0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)

Vậy \(x\ne2\)và \(x\ne0\)thì M có nghĩa

b) \(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)

\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)

\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3\)

\(=x\left(x-2\right)+3\)

\(=x^2-2x+3\)

c) Ta có: \(M=x^2-2x+3\)

\(=\left(x-1\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+2\ge0+2;\forall x\)

Hay \(M\ge2;\forall x\)

Dấu'="xẩy ra \(\Leftrightarrow x-1=0\)

                      \(\Leftrightarrow x=1\)

Vậy \(M_{min}=2\)\(\Leftrightarrow x=1\)

19 tháng 9 2018

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = \(-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                        => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

                           => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                            => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2

1 tháng 1 2020

\(N=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-3x-x+3+11\)

\(=x^2-4x+14\)

\(=x^2-2x-2x+4+10\)

    = \(x\left(x-2\right)-2\left(x-2\right)+10\)

\(\left(x-2\right)\left(x-2\right)+10\)

\(\left(x-2\right)^2+10\ge10\)

Vậy \(Min_A=10\)

2 tháng 1 2020

\(N=\left(x-1\right)\left(x-3\right)+11=x^2-4x+3+11=x^2-4x+4+10=\left(x-2\right)^2+10\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow N\ge10\)

Dấu bằng xảy ra \(\Leftrightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(minN=10\Leftrightarrow x=2\)