Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x>0thif D=x+x=2x>0 (1)
Với \(x\le0\) thì D=x-x=0 (2)
Từ (1) và(2) =>:GTNN của D bằng 0 khi và chỉ khi \(x\le0\)
mk nhé bạn ^...^ ^_^
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
\(A=\frac{2026}{\left|x-2013\right|}+2\)
Để A nhỏ nhất thì \(\frac{2026}{\left|x-2013\right|}\)nhỏ nhất
\(\Rightarrow\left|x-2013\right|\)nhỏ nhất
Mà \(\left|x-2013\right|\ge0\forall x\)và \(\left|x-2013\right|\ne0\)
\(\Rightarrow\left|x-2013\right|=1\)thì A nhỏ nhất
Khi đó \(A=\frac{2026}{1}+2=2023+2=2028\)
Vậy Amax = 2028 <=> | x - 2013 | = 1 <=> x ∈ { 2014; 2012 }
Lời giải:
Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$
$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$
Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$
Ta có:
\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|\)
\(B=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+...+\left(\left|x-50\right|+\left|51-x\right|\right)\)
\(\ge\left|x-1+100-x\right|+\left|x-2+99-x\right|+...+\left|x-50+51-x\right|\)
\(=99+97+...+1=2500\)
Dấu "=" xảy ra khi: \(x=\frac{101}{2}\)