Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\left|x+1\right|=t\ge0\) ta có:
\(pt\Leftrightarrow C=\dfrac{15t+32}{6t+8}=\dfrac{12t+16}{6t+8}+\dfrac{3t+4}{6t+8}+\dfrac{12}{6t+8}\)
\(=\dfrac{2\left(6t+8\right)}{6t+8}+\dfrac{3t+4}{2\left(3t+4\right)}+\dfrac{12}{6t+8}\)
\(=2+\dfrac{1}{2}+\dfrac{12}{6t+8}\le2+\dfrac{1}{2}+\dfrac{12}{8}=4\)
Dấu "=" khi \(t=0\Leftrightarrow x=-1\)
\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)
Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1
Vậy MaxA = 4 <=> x = -1
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Với mọi giá trị của \(x\in R\) ta có:
\(\left\{{}\begin{matrix}15\left|x+1\right|+32\ge32\\6\left|x+1\right|+8\ge8\end{matrix}\right.\)
\(\Rightarrow\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\ge4\)
Hay \(C\ge4\)với mọi giá trị của \(x\in R\)
Để \(C=4\) thì:
\(\left\{{}\begin{matrix}15\left|x+1\right|=0\\6\left|x+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Rightarrow x=-1\)
Vậy......................
Chúc bạn học tốt!!!
R là j ?