\(\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Với mọi giá trị của \(x\in R\) ta có:

\(\left\{{}\begin{matrix}15\left|x+1\right|+32\ge32\\6\left|x+1\right|+8\ge8\end{matrix}\right.\)

\(\Rightarrow\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\ge4\)

Hay \(C\ge4\)với mọi giá trị của \(x\in R\)

Để \(C=4\) thì:

\(\left\{{}\begin{matrix}15\left|x+1\right|=0\\6\left|x+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Rightarrow x=-1\)

Vậy......................

Chúc bạn học tốt!!!

19 tháng 8 2017

R là j ?

19 tháng 8 2017

cảm ơn rất nhiều vui

15 tháng 3 2018

Đặt: \(\left|x+1\right|=t\ge0\) ta có:

\(pt\Leftrightarrow C=\dfrac{15t+32}{6t+8}=\dfrac{12t+16}{6t+8}+\dfrac{3t+4}{6t+8}+\dfrac{12}{6t+8}\)

\(=\dfrac{2\left(6t+8\right)}{6t+8}+\dfrac{3t+4}{2\left(3t+4\right)}+\dfrac{12}{6t+8}\)

\(=2+\dfrac{1}{2}+\dfrac{12}{6t+8}\le2+\dfrac{1}{2}+\dfrac{12}{8}=4\)

Dấu "=" khi \(t=0\Leftrightarrow x=-1\)

15 tháng 7 2018

13/6

mk học lớp 6 nên ko rõ

16 tháng 7 2018

Cho mi nek:

Bá» sÆ°u tập hình ná»n Fanart Rem (Re:Zero) siêu dá» thÆ°Æ¡ng | Cotvn.NetKawaii Anime

8 tháng 11 2016

47 phần 14

24 tháng 11 2017

bạn có biết cách làm ko vậy đúng lúc mình đang cần gấp

24 tháng 11 2017

\(A=4\) nha bạn . 

14 tháng 7 2021

\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)

Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)

Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1

Vậy MaxA = 4 <=> x = -1

14 tháng 7 2021

Thanks! 

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8