\(\frac{3}{-3-4x^2+4x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

tính mẫu số trước nhé

đặt dấu - ra ngoài

= -[(4x^2+4x)-3]

đặt 4 ra nữa nhé

= -[4(x^2+x)-3)]

phân tích (x^2+x) theo công thức (a+b)^2

= -[4(x+1/2)^2-13/4)] 

bỏ dấu trừ ra 

= -4(x+1/2)^2 + 13/4

nhận xét :

(x+1/2)^2> hoặc =0

=> -4(x+1/2)^2 < hoặc = 0

=> -4(x+1/2)^2 -+13/4 < hoặc = 13/4

=> A > hoặc = 3/(13/4) = 12/13 ( vì đây là mẫu số nên chia sẽ đổi dấu lại)

=> Min A = 12/13 khi x = -1/2

3 tháng 7 2020

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

3 tháng 7 2020

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(

NM
7 tháng 2 2021

ta có 

\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\)

\(\Leftrightarrow\Delta'=4-A.\left(A-3\right)\ge0\Leftrightarrow A\in\left[-1;4\right]\)

Do đó giá trị nhỏ nhất của A là -1 khi x=2

7 tháng 2 2021

*nháp

Ta có: \(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+A=3-4x\Leftrightarrow Ax^2+4x+\left(A-3\right)=0\)

\(\Delta=4^2-4A\left(A-3\right)=-4A^2+12A+16\ge0\)

\(\Leftrightarrow A^2-3A-4\le0\Leftrightarrow\left(A^2+A\right)-\left(4A+4\right)\le0\)

\(\Leftrightarrow\left(A+1\right)\left(A-4\right)\le0\Rightarrow4\ge A\ge-1\)

Khi đó Min(A) = -1

Bài làm:

Ta có: \(A=\frac{3-4x}{x^2+1}=\frac{\left(x^2-4x+4\right)-x^2-1}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: x = 2

Vậy Min(A) = -1 khi x = 2

2 tháng 12 2019

\(P=\frac{3-4x}{1+x^2}\)đạt gtnn 

\(P=x^2-1\)

\(\Rightarrow-x^2+p+1=0\)

\(\Rightarrow x=\sqrt{p+1}\)

\(\Rightarrow x=-\sqrt{p+1}\)

\(x=\sqrt{p+1}\)

Vậy GTNN \(\hept{\begin{cases}x=-\sqrt{p+1}\\x=\sqrt{p+1}\end{cases}}\)

\(x=\perp\sqrt{p+1}\)

20 tháng 3 2021

chịu em ko bik j hết nè>>>

20 tháng 3 2021

- GTLN :

\(K=\frac{3-4x}{2x^2+2}\)

\(=\frac{-\left(4x^2+4x+1\right)+2\left(2x^2+2\right)}{2x^2+2}\)

\(=\frac{-\left(2x+1\right)^2}{2x^2+2}+2\le2\) ( do \(\frac{-\left(2x+1\right)^2}{2x^2+2}\le0\))

Vậy GTLN của K = 2 khi và chỉ khi \(x=\frac{-1}{2}\)

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

8 tháng 2 2019

\(B=\frac{x^2+4x+85}{3\left(x+2\right)}=\frac{\left(x^2-14x+49\right)+\left(18x+36\right)}{3\left(x+2\right)}\)

\(=\frac{\left(x-7\right)^2+18\left(x+2\right)}{3\left(x+2\right)}=\frac{\left(x-7\right)^2}{3\left(x+2\right)}+6\ge6\forall x>0\)

Dấu "=" xảy ra khi: \(x-7=0\Leftrightarrow x=7\)

15 tháng 3 2020

Ta co \(P=\frac{4x^2}{x-3}-48+48=\frac{\left(x-6\right)^2}{x-3}+48\)

lai co \(\left(x-6\right)^2\ge0,x>3\)

\(\Rightarrow\frac{\left(x-6\right)^2}{x-3}\ge0\Rightarrow P\ge0+48=48\)

\(\Rightarrow\)GTNN cua P=48

DBXR khi:x-6=0\(\Leftrightarrow x=6\)

Vay...

30 tháng 5 2017

TA CÓ \(\frac{16x^2-5x+3}{4x}=4x-\frac{5}{4}+\frac{3}{4x}\)

Áp dụng BDT cô-si có \(4x-\frac{5}{4}+\frac{3}{4x}\ge-\frac{5}{4}+2\sqrt{4x\times\frac{3}{4x}}=-\frac{5}{4}+2\times3=\frac{19}{4}\)

Dấu bằng xảy ra \(\Leftrightarrow4x=\frac{3}{4x}\Leftrightarrow x=\frac{\sqrt{3}}{4}\)

6 tháng 11 2017

bạn kia làm đúng rồi 

k tui nha

thank