\(\dfrac{2016}{2017 - |x - 2016|}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(B=\dfrac{2016}{2017-\left|x-2016\right|}\)

\(\left|x-2016\right|\ge0\)

\(\Rightarrow2017-\left|x-2016\right|\le2017\)

Dấu "=" xảy ra khi:

\(\left|x-2006\right|=0\Rightarrow x=2006\)

\(\Rightarrow MIN_B=\dfrac{2016}{2017-0}=\dfrac{2016}{2017}\)

17 tháng 7 2017

Với mọi x thì /x-2016/ >= 0

suy ra 2017-/x-2016/>=2017

suy ra \(\dfrac{2016}{2017-< x-2016>}\)>=\(\dfrac{2017}{2016}\)

hay B>=\(\dfrac{2017}{2016}\)

đểB=\(\dfrac{2017}{2016}\)thì x-2016=0suy ra x=2016

vậy giá trị nhỏ nhất của B là 2016 đạt đc khi và chỉ khi x=2016

xin lỗi mk ko viết đc kí hiệu, chúc bạn học tốt ạ

1 tháng 10 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

18 tháng 12 2016

a, \(\left|x-2016\right|+\left|x+2017\right|=\left|2016-x\right|+\left|x+2017\right|\)

\(\ge\left|2016-x+x+2017\right|=4033\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2016-x\right)\left(x+2017\right)\ge0\)

Bạn tự giải nốt nhé!

b. Ta có : \(\left(x+5\right)^2\ge0\) với mọi x
\(\Leftrightarrow\left(x+5\right)^2+2016\ge2016\) với mọi x
\(\Leftrightarrow\frac{1}{\left(x+5\right)^2+2016}\le\frac{1}{2016}\) với mọi x
\(\Leftrightarrow\frac{3}{\left(x+5\right)^2+2016}\le\frac{3}{2016}=\frac{1}{672}\) với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

Bạn tự kết luận nha :)

25 tháng 10 2018

A=\(|\)2017 -x \(|\)\(|\)x-2016 |

 Ta có: \(\left|2017-x\right|\ge2017-x\forall x\)(1)

      Dấu "=" xảy ra khi:

            \(2017-x\ge0\)

     \(\Rightarrow-x\ge-2017\)

     \(\Rightarrow x\le2017\)

Lại có:\(\left|x-2016\right|\ge x-2016\forall x\)(2)

       Dấu "=" xảy ra khi:

           \(x-2016\ge0\)

     \(\Rightarrow x\ge2016\)

Từ (1) và (2) \(\Rightarrow\left|2017-x\right|+\left| x-2016\right|\ge2017-x+x-2016\)

                     \(\Rightarrow A\ge\left(2017-2016\right)-\left(x-x\right)\)

                     \(\Rightarrow A\ge1\)

Ta thấy A=1 khi ​\(\hept{\begin{cases}x\le2017\\x\ge2016\end{cases}\Rightarrow2016\le x\le2017}\)

Vậy GTNN của A là 1 khi \(2016\le x\le2017\)

24 tháng 1 2017

Đặt bẫy hả