Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)
\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)
vì \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
vậy gtnn của bt là 2016 khi x=3;y=4
đề này của sở giáo dục và đào tạo tỉnh hà nam
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
A = x2 + 2y2 - 2xy + 2x - 2y + 1
= x2 - 2xy + y2 + 2 ( x - y ) + 1 + y2
= ( x - y )2 + 2 ( x - y ) + 1 + y2
= ( x - y + 1 )2 + y2 ≥ 0
Dấu = xảy ra khi :
\(\left\{{}\begin{matrix}x-y+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
B = x2 + 2y2 - 2xy + 2x - 10y
= x2 - 2xy + y2 + 2x - 2y + 1 + y2 - 8x + 16 - 17
= ( x - y )2 + 2 ( x - y ) + 1 + ( y - 4 )2 - 17
= ( x - y + 1 )2 + ( y - 4 )2 - 17 ≥ - 17
Dấu = xảy ra khi :
\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(x2-2x+1)+2
= (x-y)2+(x-1)2 +2
do (x-y)2 ≥ 0 ∀ x,y
(x-1)2 ≥ 0 ∀ x
=> (x-y)2+(x-1)2 +2 ≥ 2
=> A ≥ 2
nimA=2 dấu "=" xảy ra khi
x-y=0
x-1=0
=> x=y=1
vậy nimA =2 khi x=y=1
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)