K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

GTNN của x=0

khi x thuộc N

tíc mình nha

27 tháng 8 2016

giải đầy đủ đc ko bạn

7 tháng 9 2016

tui ra x=2015

7 tháng 9 2016

tao cũng nghĩ vậy.con hoa phải không.:)

26 tháng 11 2017

a,lớn nhất là vô tận nhỏ nhất là 0

các câu khác đều thế

26 tháng 11 2017

bạn nào có thể chỉ mk cách lam luôn dc ko

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

3 tháng 12 2018

\(H=\left|x-3\right|+\left|4+x\right|\)

\(H=\left|3-x\right|+\left|4+x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(H\ge\left|3-x+4+x\right|=\left|7\right|=7\)

Dấu "=" xảy ra khi ( có 2 trường hợp )

TH1: \(\hept{\begin{cases}3-x>0\\4+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}\Rightarrow}-3< x< 3\left(Chon\right)}\)

TH2: \(\hept{\begin{cases}3-x< 0\\4+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -4\end{cases}\Rightarrow}3< x< -4\left(Loai\right)}\)

Vậy Hmin = 7 khi và chỉ khi -3 < x < 3

3 tháng 12 2018

Ta có:

\(\hept{\begin{cases}\left|x-3\right|=\left|3-x\right|\ge3-x\\\left|4+x\right|\ge4+x\end{cases}\forall x}\)

\(H=\left|x-3\right|+\left|4+x\right|\)

\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\)

\(\Rightarrow H\ge3-x+4+x=7\)

\(H=7\Leftrightarrow\hept{\begin{cases}\left|3-x\right|=3-x\\\left|4+x\right|=4+x\end{cases}\Leftrightarrow}\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Leftrightarrow-4\le x\le3}\)

Vậy \(H_{min}=7\Leftrightarrow-4\le x\le3\)

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

12 tháng 3 2017

Vì \(\left(x+2\right)^2\ge0\forall x;\left|y-\frac{1}{5}\right|\ge0\forall y\)

\(\Rightarrow\left(x+2\right)^2+\left|y-\frac{1}{5}\right|\ge0\forall x;y\)

\(\Rightarrow A=\left(x+2\right)^2+\left|y-\frac{1}{5}\right|-10\ge-10\forall x;y\)

Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0;\left|y-\frac{1}{5}\right|=0\)

\(\Rightarrow x=-2;y=\frac{1}{5}\)

Vậy \(A_{min}=-10\) tại \(x=-2;y=\frac{1}{5}\)

NM
6 tháng 9 2021

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

3 tháng 8 2023

Nguyễn Minh Quang sai dấu câu A rồi