K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2022

\(A=\left(x-3\right)^2+\left(x+1\right)^2\)

\(\Rightarrow A=x^2-6x+9+x^2+2x+1\)

\(\Rightarrow A=2x^2-4x+10\)

\(\Rightarrow A=2\left(x^2-2x+5\right)\)

\(\Rightarrow A=2\left[\left(x^2-2x+1\right)+4\right]\)

\(\Rightarrow A=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow A=2\left(x-1\right)^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(A_{min}=8\Leftrightarrow x=1\)