Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất
=> |x - 2019| + 2021 nhỏ nhất
Ta có: \(\left|x-2019\right|\ge0\)
\(\Rightarrow\left|x-2019\right|+2021\ge2021\)
Dấu "=" xảy ra khi x - 2019 = 0
=> x = 2019
\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)
Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).
Ta có: A = |x - 2019| + |x - 2020|
=> A = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1
Dấu "=" xảy ra <=> \(\left(x-2019\right)\left(2020-x\right)\ge0\)
<=> \(2019\le x\le2020\)
Vậy MinA = 1 <=> 2019 \(\le\)x \(\le\)2020
Mình giống bạn Edogawa Conan nhé
nhé !
Mình mới đăng kí !
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
Vì \(\left|x-2019\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy Amin = 2018 <=> x = 2019
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)
\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)
\(=1-\frac{1}{\left|x-2019\right|+2021}\)
\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)
Dấu "=" xảy ra tại \(x=2019\)
Bài giải
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN
Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019
\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)
\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)
\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)
a, Để A nhận giá trị lớn nhất thì 19 - x nhận giá trị nguyên dương nhỏ nhất : \(19-x=1\Leftrightarrow x=18\)
b, Để B nhận giá trị nhỏ nhất thì x - 2019 nhận giá trị nguyên âm lớn nhất : \(x-2019=-1\Leftrightarrow x=2018\)
a) Vì \(\left|4x-2\right|\ge0\forall x\)\(\Rightarrow\left|4x-2\right|+1\ge1\forall x\)
hay \(A\ge1\)
Dấu " = "xảy ra \(\Leftrightarrow4x-2=0\)\(\Leftrightarrow4x=2\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(minA=1\)\(\Leftrightarrow x=\frac{1}{2}\)
b) \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\)
\(\Rightarrow B\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-2020\right)\left(1-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2020\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\x\ge1\end{cases}}\Leftrightarrow1\le x\le2020\)
TH2: \(\hept{\begin{cases}x-2020\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\1\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\x\le1\end{cases}}\)( vô lý )
Vậy \(minB=2019\)\(\Leftrightarrow1\le x\le2020\)
câu a) đề sai sai ,sửa đề : A = 4|x-2| + 1
a) A =4| x-2| + 1
Ta có : |x-2| min =0 khi x = 2
<=> 4|x-2| min = 0 khi x = 2
<=> ( 4 | x-2| + 1 )min =1 khi x = 2
Vậy Min của A = 1 ,khi x = 2
b) B= | x-2020| +| x-1| x
Ta có với mọi x , y \(\inℚ\)thì | x | + | y| \(\ge\left|x+y\right|\)với điều kiện x , y \(\ge0\)
Có B = | x - 2020 | + | x - 1 |
= | x - 2020 | + | 1 - x | \(\ge\left|x-2020+1-x\right|\)
= | - 2019 | = 2019
Vậy Min B = 2019 khi \(1\le x\le2020\)
Nếu đề a) ko sai thì chat riêng với mình nhé ,bạn chỉ cần dịch nhẹ chuột đến tên nik của mình ,xong nhấn nhắn tin là được !!!
Ta có:\(\frac{3-x}{2021}+\frac{2020-x}{2019}+\frac{4033-x}{2017}+\frac{6042-x}{2015}=10\)
\(\Leftrightarrow\frac{3-x}{2021}-1+\frac{2020-x}{2019}-2+\frac{4033-x}{2017}-3+\frac{6042-x}{2015}-4=0\)
\(\Leftrightarrow\frac{3-x-2021}{2021}+\frac{2020-x-4038}{2019}+\frac{4033-x-6051}{2017}+\frac{6042-x-8060}{2015}=0\)
\(\Leftrightarrow\frac{-2018-x}{2021}+\frac{-2018-x}{2019}+\frac{-2018-x}{2017}+\frac{-2018-x}{2015}=0\)
\(\Leftrightarrow-\left(2018+x\right)\left(\frac{1}{2021}+\frac{1}{2019}+\frac{1}{2017}+\frac{1}{2015}\right)=0\)
\(\Leftrightarrow2018+x=0.Do\frac{1}{2021}+\frac{1}{2019}+\frac{1}{2017}+\frac{1}{2015}>0\)
\(\Leftrightarrow x=-2018\)
V...
Ta có: \(\hept{\begin{cases}\left|x-2019\right|\ge0\forall x\\\left|x+2020\right|\ge0\forall x\end{cases}}\)
\(\Rightarrow A=\left|x-2019\right|+\left|x+2020\right|\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2019\right|=0\\\left|x+2020\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2019\\x=-2020\end{cases}}}\)
Vậy....
Ta có : A = |x - 2019| + |x + 2020|
= |2019 - x| + |x + 2020|
\(\ge\) |2019 - x + x + 2020|
= 4039
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2019-x\ge0\\x+2020\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le2019\\x\ge-2020\end{cases}\Rightarrow}-2020\le x\le2019}\)
Vậy Min A = 4039 <=> \(-2020\le x\le2019\)