\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

áp dụng bdt cauchy -schửat dạng engel ta có 

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)\(\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}=\frac{1}{2}\)

(do \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) bn tự cm nhé)

dau = xay ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)

\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)

\(\Rightarrow x+y+z\geq 1\)

Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)

Vậy \(A_{\min}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

\(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)

\(\Rightarrow ab+bc+ca=3\)

Áp dụng bđt Cauchy-Schwarz ta có

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

Dấu "=" xảy ra khi a=b=c=1 => x=y=z=1

18 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{xy}{\sqrt{z+xy}}=\frac{xy}{\sqrt{z\left(x+y+z\right)+xy}}=\frac{xy}{\sqrt{xz+yz+z^2+xy}}\)

\(=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{yz}{\sqrt{x+yz}}\le\frac{1}{2}\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right);\frac{xz}{\sqrt{y+xz}}\le\frac{1}{2}\left(\frac{xz}{y+z}+\frac{xz}{x+y}\right)\)

Cộng theo vế các BĐT trên ta có:

\(P\le\frac{1}{2}\left(\frac{xy+yz}{x+z}+\frac{yz+xz}{x+y}+\frac{xy+xz}{y+z}\right)\)

\(=\frac{1}{2}\left(\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}+\frac{x\left(y+z\right)}{y+z}\right)\)

\(=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z=1\right)\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

22 tháng 3 2016

GTNN là 1 bạn ak

22 tháng 3 2016

1 nha tui ko chắc chắn đâu

tui mới lớp 5 mà

4 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz Engel, ta được:

T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))

Áp dụng BĐT AM-GM , ta được:

T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)

Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673

4 tháng 6 2019

\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)

=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)

=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)

xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)

3 tháng 3 2017

áp dụng bđt Schwarz thôi mak :

A >/ (x+y+z)/2

phần còn lại là c/m x+y+z >/ căn xy + căn yz + căn zx >/ 1 =>A >/ 1/2

3 tháng 3 2017

thật lòng xin lỗi anh chị , em mới hok lớp 6 hà !!!!!!