Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có M=\(\frac{20-7n}{5-2n}=>2M=\frac{40-14n}{5-2n}\left(=\right)2M=\frac{5+7.\left(5-2n\right)}{5-2n}\left(=\right)\frac{5}{5-2n}+7=>M=\frac{5}{10-4n}+\frac{7}{2}\)
Để M nhỏ nhất thì \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất
để \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất thì \(\frac{5}{10-4n}\)nhỏ nhất
xét 2 TH
TH1:10-4n>0=>\(\frac{5}{10-4n}\)>0
TH2 10-4<0=>\(\frac{5}{10-4n}< 0\)
để \(\frac{5}{10-4n}\)nhỏ nhất thì \(\frac{5}{10-4n}< 0\)mà n nguyên =>10-4n=-2(=)4n=12(=)n=3
=> M=\(\frac{5}{10-12}+\frac{7}{2}=\frac{-5}{2}+\frac{7}{2}=1\)
Vậy min(m)=1 khi n=3
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
\(A=\frac{7n+3}{2n+3}=\frac{2n+3}{2n+3}+\frac{5n}{2n+3}=1+\frac{5n}{2n+3}\).
A mang GTNN(giá trị nhỏ nhất) khi 5n có GTNN và 2n+3 có GTLN(giá trị lớn nhất)
\(\Leftrightarrow\) 5n=0 \(\Rightarrow\frac{5n}{2n+3}=0\). Vậy GTNN của biểu thức \(A=1+0=1\), khi đó x=0
A=2n+37n+3=2n+32n+3+2n+35n=1+2n+35n.
A mang GTNN(giá trị nhỏ nhất) khi 5n có GTNN và 2n+3 có GTLN(giá trị lớn nhất)
\Leftrightarrow⇔ 5n=0 \Rightarrow\frac{5n}{2n+3}=0⇒2n+35n=0. Vậy GTNN của biểu thức A=1+0=1A=1+0=1, khi đó x=0
Vậy x = 0