K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

Để \(A_{min}\)\(\Rightarrow\frac{-8}{4\left|5x+7\right|+24}\)Min

Mà \(\frac{-8}{4\left|5x-7\right|+24}\)Min khi \(4\left|5x-7\right|+24\)Min

Có \(4\left|5x-7\right|+24\ge24\)

\(\Rightarrow A\ge5+\frac{-8}{24}=5-\frac{1}{3}=\frac{14}{3}\)

Vậy Min A = 14/3 <=> x = 7/5

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:

$A=5-2|5x+7|+24=29-2|5x+7|$ không có GTNN bạn nhé.

27 tháng 9 2020

Mình cũng thắc mắc câu này ;-;

27 tháng 9 2020

Ta có:

\(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\frac{57}{28}\)

=> \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge57\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\Rightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Vậy \(Min=28\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee