Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(-x^2+2x-1-3\)
\(=-\left(x-1\right)^2-3\)
Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)
=> \(-\left(x-1\right)^2-3\le-3\forall x\)
Vậy Max = -3 <=> x = 1 .
b, Ta có : \(-x^2-4x-4+4\)
\(=-\left(x+2\right)^2+4\)
Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)
=> \(-\left(x+2\right)^2+4\le4\forall x\)
Vậy Max = 4 <=> x = -2 .
c, Ta có : \(-9x^2+24x-16-2\)
\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)
\(=-9\left(x-\frac{4}{3}\right)^2-2\)
Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)
=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)
Vậy Max = -2 <=> x = \(\frac{4}{3}\) .
d, Ta có : \(-x^2+4x-4+3\)
\(=-\left(x-2\right)^2+3\)
Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2+3\le3\forall x\)
Vậy Max = 3 <=> x = 2 .
e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)
\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)
\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)
Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)
=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)
Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
a, ( x2 + x )2 - 14 ( x2 + x ) + 24
= (x2 + x)2 - 2(x2 + x) -12(x2 + x) + 24
= (x2 + x).(x2 + x -2) - 12(x2 + x -2)
= (x2 + x -2).(x2 + x -12)
= (x2 + 2x - x - 2).(x2 + 4x - 3x - 12)
=[x.(x+2)-(x+2)].[x.(x+4)-3(x+4)]
= (x+2).(x-1).(x+4).(x-3)
= x4 + 2x3 - 13x2 - 14x + 24
b, ( x2 + x )2 + 4x2 + 4x - 12
= x4 + 2x3 + x2 + 4x2 + 4x -12
= x4 + 2x3 + 5x2 + 4x -12
c, x4 + 2x3 + 5x2 + 4x - 12
= x4 - x3 + 3x3 - 3x2 + 8x2 - 8x +12x -12
= x3(x-1) + 3x2(x-1) + 8x(x-1) + 12(x-1)
= (x-1) . (x3 + 3x2 + 8x +12)
= (x-1) . ( x3 +2x2 + x2 + 2x + 6x +12)
= (x-1). [x2(x+2) + x(x+2) + 6(x+2)]
= (x-1).(x+2).(x2 + x+ 6)
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
Bài 4:
a) Ta có: \(a^4+a^2+1\)
\(=a^4+2a^2+1-a^2\)
\(=\left(a^2+1\right)^2-a^2\)
\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)
b) Ta có: \(a^4+a^2-2\)
\(=a^4+2a^2-a^2-2\)
\(=a^2\left(a^2+2\right)-\left(a^2+2\right)\)
\(=\left(a^2+2\right)\left(a^2-1\right)\)
\(=\left(a^2+2\right)\left(a-1\right)\left(a+1\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+5x^2-x^2-5\)
\(=x^2\left(x^2+5\right)-\left(x^2+5\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
d) Ta có: \(x^3-19x-30\)
\(=x^3-25x+6x-30\)
\(=x\left(x^2-25\right)+6\left(x-5\right)\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
e) Ta có: \(x^3-7x-6\)
\(=x^3-4x-3x-6\)
\(=x\left(x^2-4\right)-3\left(x+2\right)\)
\(=x\left(x-2\right)\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x+2\right)\left(x^2-3x+x-3\right)\)
\(=\left(x+2\right)\left[x\left(x-3\right)+\left(x-3\right)\right]\)
\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)
f) Ta có: \(x^3-5x^2-14x\)
\(=x\left(x^2-5x-14\right)\)
\(=x\left(x^2-7x+2x-14\right)\)
\(=x\left[x\left(x-7\right)+2\left(x-7\right)\right]\)
\(=x\left(x-7\right)\left(x+2\right)\)
a) \(4x^2-12x+9\)
\(=\left(2x\right)^2-2.2.3+3^2\)
\(=\left(2x-3\right)^2\)
b) \(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1^2\)
\(=\left(2x+1\right)^2\)
c) \(1+12x+36x^2\)
\(=1^2+2.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2\)
\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
e) Viết = công thức trực quan hộ mình
f) \(-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.5x+5^2\right)\)
\(=-\left(x-5\right)^2\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)