K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

A=(x^2+5x-6)(x^+5x+6)=(x^2+5x)^2-36>=-36

A min=-36 <=> x(x+5)=0

<=>x=0;x=-5

B=(4x^2-4xy+y^2)+(x^2+4x+4)+3=(2x-y)^2+(x+2)^2+3>=3

B min=3 <=> x=-2;y=-4

tick mik nha

24 tháng 10 2016

= x^2-4xy+4y^2+y^2-22y+121-93

=(x+2y)^2+(y-11)^2>=-93

GNNN là -93

7 tháng 11 2017

Ta có: \(B=x^2-4xy+5y^2-22y+28\)

                \(=x^2-4xy+y^2-22y+121-93\)

                  \(=\left(x-2y\right)^2+\left(y-11\right)^2-93\)

Vì \(\left(x-2y\right)^2\ge0;\left(y-11\right)^2\ge0\)

\(\Rightarrow B\ge-93\)

Dấu "=" xảy ra khi \(y-11=0\Rightarrow y=11\)

                              \(x-2y=0\Rightarrow x-2.11=0\Rightarrow x=22\)

Vậy Bmin=-93 khi x=22; y=11

12 tháng 7 2021

M = x2 + 4x + 2 = ( x2 + 4x + 4 ) - 2 = ( x + 2 )2 - 2 ≥ -2 ∀ x

Dấu "=" xảy ra <=> x = -2 . Vậy MinM = -2

N = 4x2 - 8x + 4 = ( 2x - 2 )2 ≥ 0 ∀ x 

Dấu "=" xảy ra <=> x = 1 . Vậy MinN = 0

E = x( x - 6 ) - 6 = x2 - 6x - 6 = ( x2 - 6x + 9 ) - 15 = ( x - 3 )2 - 15 ≥ -15 ∀ x

Dấu "=" xảy ra <=> x = 3 . Vậy MinE = -15

8 tháng 11 2015

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

8 tháng 11 2015

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

29 tháng 7 2019

Ta có:

A = -x2 - 4x - 2 = -(x2 +  4x + 4) + 2 = -(x + 2)2 + 2

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 2 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của A = 2 tại x = -2 

(xem lại đề)

\(2x^2+10x-1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)

\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)

\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)

9 tháng 8 2016

Min B= -1 khi x=0

Min C=0 khi x=0

27 tháng 7 2017

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989