\(\frac{2x^2-6x+5}{x^2-2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)

\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)

20 tháng 3 2018

dòng thứ 2 ko hiểu

12 tháng 2 2019

1,\(A=2x^2-6x+7\)

   \(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)

   \(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" khi \(x=\frac{3}{2}\)

2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)

\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1) 

*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)

                                \(\Leftrightarrow2x-3=0\)

                                \(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)

*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B

Pt (1) có nghiệm khi \(\Delta\ge0\)

                          \(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)

                           \(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)

                           \(\Leftrightarrow B\ge1\)

Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)

                                        \(\Leftrightarrow-\left(x-2\right)^2=0\)

                                        \(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)

Thấy 1 < 2 nên BMin = 1<=> x = 2

Vậy ....

12 tháng 2 2019

A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1

Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0

Nên:A\(\ge\) -1

B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\)  -3

19 tháng 9 2019

a) 

\(A=2x^2-6x\)

\(=\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{3\sqrt{2}}{2}+\frac{9}{2}-\frac{9}{2}\)

\(=\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)

Vì \(\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2};\forall x\)

Hay \(A\ge\frac{-9}{2};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x\sqrt{2}-\frac{3\sqrt{2}}{2}=0\)

                         \(\Leftrightarrow x=\frac{3}{2}\)

Vậy MIN \(A=\frac{-9}{2}\)\(\Leftrightarrow x=\frac{3}{2}\)

( xin lỗi bro mình thích làm căn )

Các bài khác làm nốt đi

20 tháng 9 2019

a) \(2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Vậy GTLN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

b)

1. \(x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy GTNN của biểu thức là \(\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

2. \(2x-2x^2-5=-2\left(x^2-x+\frac{5}{2}\right)\)

\(=-2\left(x^2-x+\frac{1}{4}+\frac{9}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{-9}{2}\)

Vậy GTNN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

5 tháng 12 2016

1/ \(B=\frac{2x^2-5x+4}{x^2-2x+1}=\frac{2x^2-5x+4}{\left(x-1\right)^2}\)

Đặt \(y=x-1\Rightarrow x=y+1\) thay vào B

\(B=\frac{2\left(y+1\right)^2-5\left(y+1\right)+4}{y^2}=\frac{2y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+2=\left(\frac{1}{y}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Đẳng thức xảy ra khi y = 2 <=> x = 3

Vậy min B = 7/4 khi x = 3

5 tháng 12 2016

2/ \(C=\frac{x^2-6x+6}{x^2-2x+1}=\frac{x^2-6x+6}{\left(x-1\right)^2}\)

Tới đây bạn làm tương tự 1/

13 tháng 12 2018

\(A=\frac{3x^2-6x+9}{x^2-2x+3}=3\)

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)