Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2>=0 (với mọi x)
=>x2+1>=1(với mọi x)
\(=>\frac{2010x+2680}{x^2+1}\le2010x+2680\)(với mọi x)
hay A <=2010x+2680
Do đó: GTNN của A là 2010x+2680 khi:
x2=0=02
=> x=0
Vậy GTNN của A là 2010x+2680 khi x=0
mk k chắc nữa
=\(\frac{-335^2-335+335x^2+2010x+3015}{x^2+1}=-335+\frac{335.\left(x+3\right)^2}{x^2+1}>hoặc=-335\)5
vậy giá trị nhỏ nhất của A bằng -335 khi x = -3
Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1 ≠ 0 và
∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8
Xét
A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33
Dấu “=” xảy ra khi m = 0
Vậy m = 0 là giá trị cần tìm
Đáp án: B
\(A=\dfrac{-x^2-2x+2014}{x^2}=\dfrac{2014}{x^2}-\dfrac{2}{x}-1=2014\left(\dfrac{1}{x}-\dfrac{1}{2014}\right)^2-\dfrac{2015}{2014}\ge-\dfrac{2015}{2014}\)
\(A_{min}=-\dfrac{2015}{2014}\) khi \(x=2014\)
\(x^2-\left(2a-1\right)x-4a-3=0\)
\(\Delta=\left(2a-1\right)^2+4\left(4a+3\right)\)
\(=4a^2-4a+1+16a+12\)
\(=4a^2+12a+13=\left(2a+3\right)^2+4>0\)
Vì \(\Delta>0\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi a
Vì phương trình có 2 nghiệm phân biệt, áp dụng hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2a-1\\x_1.x_2=-4a-3\end{matrix}\right.\) ⇒ \(x_1.x_2+2\left(x_1+x_2\right)=-5\)
Ta có:
\(A=x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=\left(2a-1\right)^2-2\left(-4a-3\right)\)
\(=4a^2-4a+1+8a+6\)
\(=\left(2a+1\right)^2+6\)
Vì \(\left(2a+1\right)^2\ge0\forall a\)
⇒\(A\ge6\)
Min A=6 <=> \(a=-\dfrac{1}{2}\)
c) Theo hệ thức Vi- et ta có:
A = x 1 2 + x 2 2 - 6 x 1 x 2 = x 1 + x 2 2 - 8 x 1 x 2
= 2 - m 2 - 8(-m + 1) = m 2 - 4m + 4 + 8m - 8
= m 2 + 4m - 4 = m + 2 2 - 8
Ta có: (m + 2)2 ≥ 0 ∀ m
⇒ m + 2 2 - 8 ≥ -8 ∀ m ⇔ A ≥ -8 ∀ m
Dấu bằng xảy ra khi m + 2 2 = 0 ⇔ m= -2
Vậy GTNN của A là -8, đạt được khi m = -2
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....