K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

29 tháng 12 2016

Mình cũng học lớp 6 nè

22 tháng 9 2023

Bất đẳng thức Cauchy \(\sqrt{ab}\le\dfrac{a+b}{2}\) viết lại dưới dạng \(ab\le\left(\dfrac{a+b}{2}\right)^2\) (*) (a, b ≥ 0)

Áp dụng bất dẳng thức Cauchy dưới dạng (*) với hai số dương 2x và xy ta được :

\(2x.xy\le\left(\dfrac{2x+xy}{2}\right)^2=4\)

Dấu “ = “ xảy ra khi : 2x = xy = 4 : 2 tức là khi x = 1, y = 2=> max A = 2 <=> x = 2, y = 2.

NV
16 tháng 11 2021

\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

18 tháng 11 2021

tại sao lại bằng 2.\(\dfrac{2}{2x+x+y}\)được vậy ạ???

 

21 tháng 6 2021

Có: \(A=16xy+\dfrac{1}{xy}-15xy\)

Áp dụng bdt Co-si, ta có:

\(16xy+\dfrac{1}{xy}\ge2\sqrt{16xy.\dfrac{1}{xy}}=8\)

Có \(x+y\ge2\sqrt{xy}< =>xy\le\dfrac{1}{4}\)

=> A \(\ge8-15.\dfrac{1}{4}=\dfrac{17}{4}\)

Dấu "=" xảy ra <=> x = y= \(\dfrac{1}{2}\)

24 tháng 2 2018

dự đoán của chúa Pain x=y=1

áp dụng BDT cô si ta có

\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)

dấu = xảy ra khi 

\(\left(x+y+1\right)^2=xy+x+y\) :)

24 tháng 2 2018

bỏ cái chỗ x=y=1 đi nhé :)

12 tháng 3 2017

Sử dụng Bdt thức   \(ab\le\left(\frac{a+b}{2}\right)^2\)  với  \(a,b>0\).

Tự chứng minh

\(------------------\)

Áp dụng bđt trên, ta có:

\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)  

Kết luận: .....